DoA estimation via MT-BCS exploiting multiplesnapshots

M.Carlin, P. Rocca, G. Oliveri, and A. Massa

Abstract

In this report, an innovative strategy for the estimation of the directions of arrival of signals impinging on linear arrays of electromagnetic sensors has been assessed. Starting from a sparse representation of the problem solution, the DoA estimation problem has been addressed by means of a methodology based on the BCS paradigm. A customized implementation exploiting the measurements collected at multiple time instants (multiple-snapshots) providing robust and very accurate estimates when correlating the information from multiple snapshots has been validated.

MT-BCS DoA estimation

GOAL: The goal of this section is the analysis of the performances of the MT-BCS method for the DoA estimation with W > 1 snapshots. The performances of the method are compared with the standard single-task BCS (ST-BCS) and with the ROOT-MUSIC and ESPRIT algorithms.

$$\underline{\hat{x}}_{h}^{(ave)} = \frac{1}{W} \sum_{w=1}^{W} |\underline{\hat{x}}_{h}(t_{w})|$$
(1)

being W the number of snapshots and $h \in \{ST - BCS, MT - BCS\}$. The main difference between the ST and MT BCS furmulations is that in the second case the non-zero elements of the estimated vectors $\underline{\hat{x}}_h(t_w)$ are forced to be in the same locations.

Analysis vs number of snapshots W

Simulation Parameters

- Scenario
 - BPSK signals $(E_l^{inc} \in \{-1, 1\})$
 - Number of incident signals: L = 2
 - Signal directions: $\underline{\theta} = \{0, 7\} \ [deg]$
 - Signal to noise ratio: $SNR = 7 \ dB$ (equivalent to a $SNR = 4 \ dB$ if the literature's definition is taken into account)
- Array parameters
 - Elements spacing: $d = 0.5\lambda$
 - Number of elements: M = 10
- MT-BCS parameters
 - Number of angular locations: K = 181
 - -a = 3.162
 - $-b = 3.981 \times 10^{1}$
- BCS parameters
 - Number of angular locations: K = 181
 - $-\ \sigma_0^2 = 4.642 \times 10^{-1}$
 - Number of snapshots: $W \in [1, 25]$

- Simulation
 - Number of independent realizations Q=150 (the noise and the signal amplitudes are random, while the DoAs are fixed)

Figure 1: RMSE vs the number of snapshots W.

Analysis vs SNR

Simulation Parameters

- Scenario
 - BPSK signals $(E_l^{inc} \in \{-1,1\})$
 - Number of incident signals: L = 2
 - Signal directions: $\underline{\theta} = \{0, 7\} \ [deg]$
 - Signal to noise ratio: $SNR \in [-5, 20] \ dB \ (SNR \in [-8, 17] \ dB$ if the literature's definition is taken into account)
- Array parameters
 - Elements spacing: $d = 0.5\lambda$
 - Number of elements: M = 10
- MT-BCS parameters
 - Number of angular locations: K = 181
 - -a = 3.162
 - $b = 3.981 \times 10^{1}$
- BCS parameters
 - Number of angular locations: K = 181
 - $\ \sigma_0^2 = 4.642 \times 10^{-1}$
 - Number of snapshots: W = 20
- Simulation
 - Number of independent realizations Q = 150 (the noise and the signal amplitudes are random, while the DoAs are fixed)

Figure 2: RMSE vs the SNR.

Analysis vs $\Delta \theta^{l(l+1)}$

Simulation Parameters

- Scenario
 - BPSK signals $(E_l^{inc} \in \{-1,1\})$
 - Number of incident signals: L = 2
 - Signals spacing: $\Delta \theta^{l(l+1)} \in [2, 20] \ deg$
 - Signals directions: $\underline{\theta} = \left\{ -\frac{\Delta \theta^{l(l+1)}}{2}, \frac{\Delta \theta^{l(l+1)}}{2} \right\} \ [deg]$
 - Signal to noise ratio: $SNR = 7 \ dB$ (equivalent to a $SNR = 4 \ dB$ if the literature's definition is taken into account)
- Array parameters
 - Elements spacing:
 - Number of elements: M = 10
- MT-BCS parameters
 - Number of angular locations: K = 181
 - -a = 3.162
 - $-b = 3.981 \times 10^{1}$
- BCS parameters
 - Number of angular locations: K = 181
 - $\ \sigma_0^2 = 4.642 \times 10^{-1}$
 - Number of snapshots: W = 20
- Simulation
 - Number of independent realizations Q = 150 (the noise and the signal amplitudes are random, while the DoAs are fixed)

Figure 3: RMSE vs the signal spacing $\Delta \theta^{l(l+1)}$.

MT-BCS vs ST-BCS comparison: estimation examples

Simulation Parameters

- $\bullet\,$ Scenario
 - BPSK signals $(E_l^{inc} \in \{-1, 1\})$
 - Number of incident signals: $L \in [1, 9]$
 - Signal directions:

L	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7	θ_8	θ_9
1	0	-	-	-	-	-	-	-	-
2	0	7	-	-	-	-	-	-	I
4	0	7	35		-	-	-	-	I
6	0	7	35	-20	22	-37	-	-	-
8	0	7	35	-20	22	-37	-9	-67	-
9	0	7	35	-20	22	-37	-9	-67	54

Table 1: Signal directions for different numbers of signals.

- Signal to noise ratio: $SNR = 7 \ dB$
- Array parameters
 - Elements spacing: $d = 0.5\lambda$
 - Number of elements: M = 10
- ST BCS and MT BCS parameters
 - Number of angular locations: K = 181
 - Number of snapshots: W = 20

Figure 4: MT - BCS vs ST - BCS: esstimated signal amplitudes when L = 2 signals impinging on the array. The number of snapshots is W = 25.

L=4, M=10, SNR=7 [dB], K=181, W=25

Figure 5: MT - BCS vs ST - BCS: esstimated signal amplitudes when L = 4 signals impinging on the array. The number of snapshots is W = 25.

Figure 6: MT - BCS vs ST - BCS: esstimated signal amplitudes when L = 6 signals impinging on the array. The number of snapshots is W = 25.

Figure 7: MT - BCS vs ST - BCS: esstimated signal amplitudes when L = 8 signals impinging on the array. The number of snapshots is W = 25.

Figure 8: MT - BCS vs ST - BCS: esstimated signal amplitudes when L = 9 signals impinging on the array. The number of snapshots is W = 25.

References

- M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through Bayesian Compressive Sensing strategies," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3828-3838, Jul. 2013.
- [2] M. Carlin, P. Rocca, G. Oliveri, and A. Massa, "Bayesian compressive sensing as applied to directionsof-arrival estimation in planar arrays," Journal of Electrical and Computer Engineering, Special Issue on "Advances in Radar Technologies", vol. 2013, pp. 1-12, 2013.
- [3] M. Carlin, P. Rocca, "A Bayesian compressive sensing strategy for direction-of-arrival estimation," 6th European Conference on Antennas Propag. (EuCAP 2012), Prague, Czech Republic, pp. 1508-1509, 26-30 Mar. 2012.
- [4] L. Lizzi, F. Viani, M. Benedetti, P. Rocca, and A. Massa, "The M-DSO-ESPRIT method for maximum likelihood DoA estimation," Progress in Electromagnetic Research, vol. 80, pp. 477-497, 2008.
- [5] M. Donelli, F. Viani, P. Rocca, and A. Massa, "An innovative multi-resolution approach for DoA estimation based on a support vector classification," IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2279-2292, Aug. 2009.
- [6] L. Lizzi, G. Oliveri, P. Rocca, and A. Massa, "Estimation of the direction-of-arrival of correlated signals by means of a SVM-based multi-resolution approach," IEEE Antennas Propag. Society International Symposium (APSURSI), Toronto, ON, Canada, pp. 1-4, 11-17 Jul. 2010.
- [7] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics A review," IEEE Antennas and Propagation Magazine, pp. 224-238, vol. 57, no. 1, Feb. 2015.
- [8] G. Oliveri and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 467-481, Feb. 2011.
- [9] G. Oliveri, M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by Bayesian Compressive Sampling," IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2309-2326, May 2012.
- [10] G. Oliveri, P. Rocca, and A. Massa, "Reliable diagnosis of large linear arrays A Bayesian Compressive Sensing approach," IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4627-4636, Oct. 2012.
- [11] F. Viani, G. Oliveri, and A. Massa, "Compressive sensing pattern matching techniques for synthesizing planar sparse arrays," IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4577-4587, Sept. 2013.
- [12] G. Oliveri, E. T. Bekele, F. Robol, and A. Massa, "Sparsening conformal arrays through a versatile BCSbased method," IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1681-1689, Apr. 2014.
- [13] M. Carlin, G. Oliveri, and A. Massa, "Hybrid BCS-deterministic approach for sparse concentric ring isophoric arrays," IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 378-383, Jan. 2015.

- [14] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, "Multifrequency Bayesian compressive sensing methods for microwave imaging," Journal of the Optical Society of the America A, vol. 31, no. 11, pp. 2415-2428, 2014.
- [15] G. Oliveri, N. Anselmi, and A. Massa, aCompressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation, a IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014.
- [16] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013.
- [17] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multitask compressive sensing strategies," Microwave Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1558, Jul. 2013.
- [18] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May 2013.
- [19] L. Poli, G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing," IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2865-2879, Jun. 2012.
- [20] G. Oliveri, P. Rocca, and A. Massa, "A bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 10, pp. 3993-4006, Oct. 2011.
- [21] G. Oliveri, L. Poli, P. Rocca, and A. Massa, "Bayesian compressive optical imaging within the Rytov approximation," Optics Letters, vol. 37, no. 10, pp. 1760-1762, 2012.
- [22] L. Poli, G. Oliveri, F. Viani, and A. Massa, "MT-BCS-based microwave imaging approach through minimum-norm current expansion," IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4722-4732, Sep. 2013.