Simultaneous control of instantaneous and average pattern features in time-modulated linear arrays

P. Rocca, L. Poli, A. Massa

Abstract

In this report, the simultaneous control of both instantaneous and average features of the TMAs patterns generated at the frequency of the receiving signal just exploiting the available time-based DoFs is investigated. The directivity of the main beam has been kept constant within the modulation period by means of the joint optimisation of both pulse-sequence descriptors (i.e., 'switch-on times' and 'switch-on instants') in order to avoid undesired fluctuation of the energy delivered at the receiver, which cause a non-negligible waste of the desired signal power in the SR, while synthesising a desired average pattern at the working frequency.

Optimization Approach

PSO, Directivity Opt.

Il processo di ottimizzazione mediante algoritmo PSO agisce sia sulle durate che sugli shift temporali degli impulsi; l'ottimizzazione è applicata su metà elementi dell'array, l'altra metà viene considerata simmetrica. Cost Function:

$$\Psi^{PSO}\left[\tau_n(i_k), \tau_n'(i_k)\right] = \sum_{l=1}^{L} \left[\left(D_l^{act,(i_k)} - D_{av} \right) \Delta t_l^{act,(i_k)} \right] / D_{av} + \frac{\left| SLL^{act,(i_k)} - SLL^{target} \right|}{SLL^{target}} + \frac{\left| BW^{act,(i_k)} - BW^{target} \right|}{BW^{target}} + \frac{\left| BW^{act,(i_k)} -$$

dove L è il numero di intervalli di variazione della direttività all'interno del periodo di modulazione, D_{av} è la direttività media sul periodo di modulazione, D_l è la direttività istantanea all'interno dell'intervallo *l*-esimo, Δt_l è la durata del *l*-esimo intervallo normalizzata rispetto al periodo di modulazione T_p , SLL^{target} è il target relativo al pattern di riferimento e BW^{target} è il beamwidth relativo al pattern di riferimento.

TEST CASE 2.a - Dolph-Chebyshev -20dB

Goal

Sintesi di un array con eccitazioni modulate nel dominio del tempo al fine di riprodurre un pattern di Dolph-Chebyshev alla frequenza centrale di lavoro e un pattern istantaneo con massima direttività costante.

Analogies and Differences wrt Previous Cases

A: Geometria dell'array, numero di elementi, algoritmo di ottimizzazione (PSO), funzione di costo implementata, configurazione statica dell'array.

D: Configurazione degli impulsi di eccitazione degli elementi (durate degli impulsi).

Test Case Description

- Number of Elements: N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: $\alpha_n = 1, n = 0, ..., N 1$
- Pattern at Central Frequency: Dolph Chebyshev, SLL = -20 dB
- Max Gain Pattern Direction : $\theta^{max} = 90^{\circ}$

Optimization Approach: PS-PSO, Directivity Opt.

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

PS-PSO, Directivity Opt. - Dolph-Chebyshev Pattern, SLL=-20 dB

PSO, Directivity Opt. - SLL=-20 dB, BW 6.8

	$SLL_{av}\left[dB ight]$	$SBL\left[dB ight]$	$BW_{av}\left[\circ ight]$	$P_{SR}\left[\% ight]$
Dolph, SLL = -20 dB	-19.57	-15.64	6.74	15.32
PS - PSO, DIR Opt.	-19.57	-20.18	6.71	15.31
PSO, DIR Opt	-20.00	-17.09	6.84	22.06

Tab.37 - Average Pattern Parameters: Sidelobe Level (SLL), Sideband Level (SBL), -3 dB Beamwidth(BW), Sideband Radiation (P_{SR})

	$av^* \{D_{max}(t)\}$	$av\left\{D_{max}(t)\right\}$	$\sigma^2 \left\{ D_{max}(t) \right\}$	$Min\left\{D_{max}(t)\right\}$	$Max\left\{D_{max}(t)\right\}$
Dolph, SLL = -20 dB	10.80	8.76	8.17	3.01	12.04
PS - PSO, DIR Opt.	11.13	11.15	0.11	10.79	11.46
PSO, DIR Opt	10.79	10.63	0.23	3.00	11.46

Tab.38 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Peak Directivity (D_{max}) in [dB]

	$av^* \left\{ SLL(t) \right\}$	$av\left\{SLL(t) ight\}$	$\sigma^2\left\{SLL(t)\right]\right\}$	$Min\left\{SLL(t)\right\}$	$Max\left\{SLL(t)\right\}$
Dolph, SLL = -20 dB	_	_	_	$-\infty$	-
PS - PSO, DIR Opt.	-11.13	-10.88	4.08	-13.47	-7.49
PSO, DIR Opt	-10.46	-9.13	4.19	-13.06	-3.87

Tab.39 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Sidelobe Level (SLL) in [dB]

	$av^* \{BW(t)\}$	$av\left\{ BW(t)\right\}$	$\sigma^2 \left\{ BW(t) \right\}$	$Min\left\{ BW(t)\right\}$	$Max\left\{ BW(t) ight\}$
Dolph, SLL = -20 dB	9.44	17.40	301.10	6.35	59.90
PS - PSO, DIR Opt.	6.72	6.61	0.14	6.11	7.39
PSO, DIR Opt	7.01	6.50	0.69	5.46	8.48

Tab.40 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of -3 dB Beamwidth (BW) in [deg]

TEST CASE 2.b - Dolph-Chebyshev -25dB

Goal

Sintesi di un array con eccitazioni modulate nel dominio del tempo al fine di riprodurre un pattern di Dolph-Chebyshev alla frequenza centrale di lavoro e un pattern istantaneo con massima direttività costante.

Analogies and Differences wrt Previous Cases

A: Geometria dell'array, numero di elementi, algoritmo di ottimizzazione (PSO), funzione di costo implementata, configurazione statica dell'array.

D: Configurazione degli impulsi di eccitazione degli elementi (durate degli impulsi).

Test Case Description

- Number of Elements: N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: $\alpha_n = 1, n = 0, ..., N 1$
- Pattern at Central Frequency: Dolph Chebyshev, SLL = -25 dB
- Max Gain Pattern Direction : $\theta^{max} = 90^{\circ}$

Optimization Approach: PS-PSO, Directivity Opt.

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

- Number of Variables: X = 16
- Number of Particles: S = 30
- Number of Iterations: I = 1000
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

PS-PSO, Directivity Opt. - Dolph-Chebyshev Pattern, SLL=-25 dB

PSO, Directivity Opt. - SLL=-25 dB, BW=7.4

	$SLL_{av}\left[dB ight]$	$SBL\left[dB ight]$	$BW_{av}\left[\circ ight]$	P_{SR} [%]
Dolph, SLL = -25 dB	-24.76	-12.42	7.37	21.93
PS - PSO, DIR Opt.	-24.76	-15.86	7.36	21.93
PSO, DIR Opt	-25.10	-13.35	7.48	31.45

Tab.29 - Average Pattern Parameters: Sidelobe Level (SLL), Sideband Level (SBL), -3 dB Beamwidth(BW), Sideband Radiation (P_{SR})

	$av^* \left\{ D_{max}(t) \right\}$	$av\left\{D_{max}(t)\right\}$	$\sigma^2 \left\{ D_{max}(t) \right\}$	$Min\left\{D_{max}(t)\right\}$	$Max\left\{D_{max}(t)\right\}$
Dolph, SLL = -25 dB	10.10	8.77	8.1	3.01	12.04
PS - PSO, DIR Opt.	10.60	10.37	0.16	10	10.79
PSO, DIR Opt	10	9.91	0.28	9.03	10.79

Tab.30 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Peak Directivity (D_{max}) in [dB]

	$av^* \left\{ SLL(t) \right\}$	$av\left\{SLL(t) ight\}$	$\sigma^2\left\{SLL(t)\right]\right\}$	$Min\left\{SLL(t)\right\}$	$Max\left\{SLL(t)\right\}$
Dolph, SLL = -25 dB	_	_	_	$-\infty$	_
PS - PSO, DIR Opt.	-10.05	-9.70	3.90	-13.06	-6.74
PSO, DIR Opt	-7.78	-7.24	5.30	-11.74	-2.61

Tab.31 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Sidelobe Level (SLL) in [dB]

	$av^* \{BW(t)\}$	$av\left\{ BW(t) ight\}$	$\sigma^2 \left\{ BW(t) \right\}$	$Min\left\{ BW(t)\right\}$	$Max\left\{ BW(t) ight\}$
Dolph, SLL = -25 dB	12.32	18.55	282.60	6.35	59.90
PS - PSO, DIR Opt.	7.12	7.65	0.45	6.52	8.55
PSO, DIR Opt	7.60	7.02	2.07	2.55	9.23

Tab.32 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of -3 dB Beamwidth (BW) in [deg]

TEST CASE 2.3 - Dolph-Chebyshev -30dB

Goal

Sintesi di un array con eccitazioni modulate nel dominio del tempo al fine di riprodurre un pattern di Dolph-Chebyshev alla frequenza centrale di lavoro e un pattern istantaneo con massima direttività costante.

Test Case Description

- Number of Elements: N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: $\alpha_n = 1, n = 0, ..., N 1$
- Pattern at Central Frequency: Dolph Chebyshev, $SLL = -30 \, dB$
- Max Gain Pattern Direction : $\theta^{max} = 90^{\circ}$

Optimization Approach: PS-PSO, Directivity Opt.

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

- Number of Variables: X = 16
- Number of Particles: S = 30
- Number of Iterations: I = 1000
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

PS-PSO, Directivity Opt. - Tennant 2008 - Dolph-Chebyshev Pattern, SLL=-30 dB

PSO, Directivity Opt. - SLL=-30 dB, BW=8.0

	$SLL_{av}\left[dB ight]$	$SBL\left[dB ight]$	$BW_{av}\left[\circ\right]$	$P_{SR}\left[\% ight]$
[Tennant 2008]	-29.86	-12.39	7.95	24.17
PS - PSO, DIR Opt.	-29.86	-16.43	7.95	24.17
PSO, DIR Opt	-30.00	-15.37	8.04	26.89

Tab.33 - Average Pattern Parameters: Sidelobe Level (SLL), Sideband Level (SBL), -3 dB Beamwidth (BW), Sideband Radiation (P_{SR})

	$av^* \left\{ D_{max}(t) \right\}$	$av\left\{D_{max}(t)\right\}$	$\sigma^2 \left\{ D_{max}(t) \right\}$	$Min\left\{D_{max}(t)\right\}$	$Max\left\{ D_{max}(t) \right\}$
[Tennant 2008]	9.66	8.76	8.17	3.01	12.04
PS - PSO, DIR Opt.	10.19	10.42	0.16	10	10.79
PSO, DIR Opt	10	9.96	0.37	9.03	10.79

Tab.34 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Peak Directivity (D_{max}) in [dB]

	$av^*\left\{SLL(t) ight\}$	$av\left\{SLL(t) ight\}$	$\sigma^2\left\{SLL(t)\right]\right\}$	$Min\left\{SLL(t)\right\}$	$Max\left\{SLL(t)\right\}$
[Tennant 2008]	_	_	_	$-\infty$	-11.30
PS - PSO, DIR Opt.	-9.79	-10.48	3.83	-13.06	-6.38
PSO, DIR Opt	-9.70	-9.36	6.80	-13.06	-5.26

Tab.35 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Sidelobe Level (SLL) in [dB]

	$av^* \{BW(t)\}$	$av\left\{ BW(t) ight\}$	$\sigma^2 \left\{ BW(t) \right\}$	$Min\left\{ BW(t)\right\}$	$Max\left\{ BW(t) ight\}$
[Tennant 2008]	13.72	18.55	281.55	6.35	59.90
PS - PSO, DIR Opt.	8.05	7.93	0.91	6.72	10.19
PS - PSO, DIR Opt	8.27	8.20	3.85	5.96	12.78

Tab.36 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of -3 dB Beamwidth (BW) in [deg]

TEST CASE 2.4 - Dolph-Chebyshev -35dB

Goal

Sintesi di un array con eccitazioni modulate nel dominio del tempo al fine di riprodurre un pattern di Dolph-Chebyshev alla frequenza centrale di lavoro e un pattern istantaneo con massima direttività costante.

Analogies and Differences wrt Previous Cases

A: Geometria dell'array, numero di elementi, algoritmo di ottimizzazione (PSO), funzione di costo implementata, configurazione statica dell'array.

D: Configurazione degli impulsi di eccitazione degli elementi (durate degli impulsi).

Test Case Description

- Number of Elements: N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: $\alpha_n = 1, n = 0, ..., N 1$
- Pattern at Central Frequency: Dolph Chebyshev, SLL = -35 dB
- Max Gain Pattern Direction : $\theta^{max} = 90^{\circ}$

Optimization Approach: PS-PSO, Directivity Opt.

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

- Number of Variables: X = 16
- Number of Particles: S = 30
- Number of Iterations: I = 1000
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

Dolph-Chebyshev Pattern, SLL=-35 dB

Dolph-Chebyshev Pattern, SLL=-35 dB - PS-PSO, Directivity Opt.

Dolph-Chebyshev Pattern, SLL=-35 dB BW= 8.5 PSO, Directivity Opt.

	$SLL_{av}\left[dB ight]$	$SBL\left[dB ight]$	$BW_{av}\left[\circ ight]$	P_{SR} [%]
Dolph, SLL = -35 dB	-34.92	-12.61	8.48	25.11
PS - PSO, DIR Opt.	-34.92	-15.76	8.48	25.11
PSO, DIR Opt	-34.85	-16.39	8.51	24.93

Tab.41 - Average Pattern Parameters: Sidelobe Level (SLL), Sideband Level (SBL), -3 dB Beamwidth(BW), Sideband Radiation (P_{SR})

	$av^* \left\{ D_{max}(t) \right\}$	$av\left\{D_{max}(t)\right\}$	$\sigma^2 \left\{ D_{max}(t) \right\}$	$Min\left\{D_{max}(t)\right\}$	$Max\left\{D_{max}(t)\right\}$
Dolph, SLL = -35 dB	9.31	8.77	8.17	3.01	12.04
PS - PSO, DIR Opt.	9.85	9.48	0.23	9.03	10
PSO, DIR Opt	9.86	9.48	0.23	9.03	10

Tab.42 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Peak Directivity (D_{max}) in [dB]

	$av^* \left\{ SLL(t) \right\}$	$av\left\{SLL(t) ight\}$	$\sigma^2 \left\{ SLL(t) \right] \right\}$	$Min\left\{SLL(t)\right\}$	$Max\left\{SLL(t)\right\}$
Dolph, SLL = -35 dB	_	_	_	$-\infty$	_
PS - PSO, DIR Opt.	-9.71	-8.95	8.01	-12.96	-3.62
PSO, DIR Op	-10.01	-8.45	5.29	-12.97	-3.82

Tab.43 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Sidelobe Level (SLL) in [dB]

	$av^* \{BW(t)\}$	$av\left\{ BW(t) ight\}$	$\sigma^2 \left\{ BW(t) \right\}$	$Min\left\{ BW(t)\right\}$	$Max\left\{ BW(t) ight\}$
Dolph, SLL = -35 dB	14.88	18.55	281.55	6.35	59.90
PS - PSO, DIR Opt.	8.87	9.22	3.63	6.69	12.78
PSO, DIR Opt	8.82	8.75	2.53	6.73	12.78

Tab.44 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of -3 dB Beamwidth (BW) in [deg]

TEST CASE 2.5 - Dolph-Chebyshev -40dB

Goal

Sintesi di un array con eccitazioni modulate nel dominio del tempo al fine di riprodurre un pattern di Dolph-Chebyshev alla frequenza centrale di lavoro e un pattern istantaneo con massima direttività costante.

Analogies and Differences wrt Previous Cases

A: Geometria dell'array, numero di elementi, algoritmo di ottimizzazione (PSO), funzione di costo implementata, configurazione statica dell'array.

D: Configurazione degli impulsi di eccitazione degli elementi (durate degli impulsi)

Test Case Description

- Number of Elements: N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: $\alpha_n = 1, n = 0, ..., N 1$
- Pattern at Central Frequency: Dolph Chebyshev, $SLL = -40 \, dB$
- Max Gain Pattern Direction : $\theta^{max} = 90^{\circ}$

Optimization Approach: PS-PSO, Directivity Opt.

- Number of Variables: X = 8
- Number of Particles: S = 20
- Number of Iterations: I = 100
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

- Number of Variables: X = 16
- Number of Particles: S = 30
- Number of Iterations: I = 1000
- Inertial Weight: Linearly varying: 0.9 to 0.4
- Swarm Initialization: Random

Dolph-Chebyshev Pattern, SLL=-40 dB

PS-PSO, Directivity Opt. - Dolph-Chebyshev Pattern, SLL=-40 dB

PSO, Directivity Opt. - SLL=-40 dB BW= 9.0

	$SLL_{av}\left[dB ight]$	$SBL\left[dB ight]$	$BW_{av}\left[\circ\right]$	P_{SR} [%]
Dolph, SLL = -40 dB	-39.96	-12.70	8.97	25.61
PS - PSO, DIR Opt.	-39.96	-16.86	8.97	25.61
PSO, DIR Opt	-32.66	-16.12	8.39	23.78

Tab.45 - Average Pattern Parameters: Sidelobe Level (SLL), Sideband Level (SBL), -3 dB Beamwidth(BW), Sideband Radiation (P_{SR})

	$av^* \left\{ D_{max}(t) \right\}$	$av\left\{D_{max}(t)\right\}$	$\sigma^2 \left\{ D_{max}(t) \right\}$	$Min\left\{D_{max}(t)\right\}$	$Max\left\{D_{max}(t)\right\}$
Dolph, SLL = -40 dB	9.03	8.77	8.17	3.01	12.04
PS - PSO, DIR Opt.	9.56	9.51	0.23	9.03	10
PSO, DIR Opt	10.00	9.52	0.23	9.03	10

Tab.46 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Peak Directivity (D_{max}) in [dB]

	$av^*\left\{SLL(t) ight\}$	$av\left\{SLL(t) ight\}$	$\sigma^2 \left\{ SLL(t) \right] \right\}$	$Min\left\{SLL(t)\right\}$	$Max\left\{SLL(t)\right\}$
Dolph, SLL = -40 dB	_	_	—	$-\infty$	_
PS - PSO, DIR Opt.	-9.20	-8.63	5.91	-12.97	-5.17
PSO, DIR Opt	-10.27	-8.56	9.16	-12.97	-3.34

Tab.47 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of Sidelobe Level (SLL) in [dB]

	$av^* \{BW(t)\}$	$av\left\{ BW(t)\right\}$	$\sigma^2 \left\{ BW(t) \right\}$	$Min\left\{ BW(t)\right\}$	$Max\left\{ BW(t) ight\}$
Dolph, SLL = -40 dB	15.92	18.55	281.55	6.35	59.90
PS - PSO, DIR Opt.	9.29	8.87	2.64	6.76	12.78
PSO, DIR Opt	8.65	8.74	4.16	6.28	12.78

Tab.48 - Istant Pattern Parameters: Weighted Average (av^*) , Average (av), Variance (σ^2) , Minimum (Min) and Maximum (Max) of -3 dB Beamwidth (BW) in [deg]

References

- P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems - 25 th Year Special Issue of Inverse Problems, Invited Topical Review, vol. 25, pp. 1-41, Dec. 2009.
- [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [3] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3246-3254, Sep. 2011.
- [4] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Harmonic beamforming in time-modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2538-2545, Jul. 2011.
- [5] L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1408-1411, Apr. 2010.
- [6] P. Rocca, L. Poli, and A. Massa, "Instantaneous directivity optimization in time-modulated array receivers," IET Microwaves, Antennas & Propagation, vol. 6, no. 14, pp. 1590-1597, Nov. 2012.
- [7] P. Rocca, L. Poli, L. Manica, and A. Massa, "Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation," IET Radar, Sonar & Navigation, vol. 6, no. 6, pp. 432-442, 2012.
- [8] L. Poli, P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microwaves, Antennas & Propagation, vol. 6, no. 2, pp. 214-222, 2012.
- [9] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 157-166, 2011.
- [10] L. Poli, P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays Analysis and optimization of the sideband radiations," IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1165-1171, 2010.
- [11] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009.
- [12] P. Rocca, L. Manica, L. Poli, and A. Massa, "Synthesis of compromise sum-difference arrays through time-modulation," IET Radar, Sonar & Navigation, vol. 3, no. 6, pp. 630-637, 2009.
- [13] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, 2014.