A customized genetic algorithm for the synthesis of adaptive thinned array with constrained directivity

L. Poli, P. Rocca, M. Salucci, A. Massa

Abstract

An innovative adaptive nulling strategy based on reconfigurable thinned arrays is studied in this report. A customized version of the genetic algorithms exploiting ad-hoc operators devoted to keep constant the number of elements instantaneously active is applied to optimize the on/off status of the switches to maximize the signal-to-interference-plus-noise ratio at the antenna output. The performances of the technique have been analyzed varying the number of array elements and the number of interferences within a static scenario.

TEST CASE 5 - 32 Elements - Fixed Scenario, Single Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.16 - Thinning Configuration

Fig.20 - Null Depth $\theta^i_1=90^\circ, \, \phi^i_1=42^\circ$ Statistics

Fig.21 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-71.79	23	39.60

Tab.6 - GA Simulation Results Analysis

TEST CASE 6 - 32 Elements - Fixed Scenario, Single Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.22 - Thinning Configuration

Fig.26 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.27 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-62.41	22	32.08

Tab.7 - GA Simulation Results Analysis

TEST CASE 7 - 32 Elements - Fixed Scenario, Single Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.28 - Thinning Configuration

Fig.32 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.33 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-53.18	19	23.14

Tab.8 - GA Simulation Results Analysis

TEST CASE 8 - 32 Elements - Fixed Scenario, Double Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.34 - Thinning Configuration

Fig.38 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics Fig.39 - Nul

Fig.39 - Null Depth $\theta_2^i=90^\circ,\,\phi_2^i=113^\circ$ Statistics

Fig.40 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-43.85	-40.92	20	9.13

Tab.9 - GA Simulation Results Analysis

TEST CASE 9 - 32 Elements - Fixed Scenario, Double Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.41 - Thinning Configuration

Fig.45 - Null Depth $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ$ Statistics Fig.46 - Null Depth $\theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$ Statistics

Fig.47 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-44.04	-39.99	22	8.55

Tab.10 - GA Simulation Results Analysis

TEST CASE 10 - 32 Elements - Fixed Scenario, Double Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.48 - Thinning Configuration

 $\textbf{Fig.52 - Null Depth } \theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Statistics} \quad \textbf{Fig.53 - Null Depth } \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ \ \textbf{Statistics} \quad \textbf{Statistics}$

Fig.54 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-38.87	-40.73	19	6.69

Tab.11 - GA Simulation Results Analysis

TEST CASE 11 - 32 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.55 - Thinning Configuration

Fig.59 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.60 - Null Depth $\theta_2^i=90^\circ,\,\phi_2^i=113^\circ$ Statistics

Fig.61 - Null Depth $\theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$ Statistics

Fig.62 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-38.67	-41.41	-36.25	22	3.51

Tab.12 - GA Simulation Results Analysis

TEST CASE 12 - 32 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.63 - Thinning Configuration

Fig.67 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.68 - Null Depth $\theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$ Statistics

Fig.69 - Null Depth $\theta_3^i=90^\circ, \, \phi_3^i=164^\circ$ Statistics

Fig.70 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-33.53	-48.66	-35.56	18	1.34

Tab.13 - GA Simulation Results Analysis

TEST CASE 13 - 32 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 32 \ (\alpha_n, n = 1, ..., N)$
- Population: 16
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 32 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.71 - Thinning Configuration

Fig.75 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.76 - Null Depth $\theta_2^i=90^\circ,\,\phi_2^i=113^\circ$ Statistics

Fig.77 - Null Depth $\theta^i_3=90^\circ, \ \phi^i_3=164^\circ$ Statistics

Fig.78 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-38.28	-39.62	-32.70	19	1.00

Tab.14 - GA Simulation Results Analysis

TEST CASE 14 - 64 Elements - Fixed Scenario, Single Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.79 - Thinning Configuration

Fig.83 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.84 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-79.47	48	44.93

Tab.15 - GA Simulation Results Analysis

TEST CASE 15 - 64 Elements - Fixed Scenario, Single Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.85 - Thinning Configuration

Fig.89 - NullsDepth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.90 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-96.59	43	46.29

Tab.16 - GA Simulation Results Analysis

TEST CASE 16 - 64 Elements - Fixed Scenario, Single Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.91 - Thinning Configuration

Fig.95 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.96 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-72.23	38	40.65

Tab.17 - GA Simulation Results Analysis

TEST CASE 17 - 64 Elements - Fixed Scenario, Double Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Double Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

Fig.97 - Thinning Configuration

Fig.101 - Null Depth $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ$ Statistics Fig.

Fig.102 - Null Depth $\theta_2^i=90^\circ, \, \phi_2^i=113^\circ$ Statistics

Fig.103 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-65.99	-54.40	43	24.08

Tab.18 - GA Simulation Results Analysis

TEST CASE 18 - 64 Elements - Fixed Scenario, Double Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Double Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

Fig.104 - Thinning Configuration

Fig.108 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics Fig.109

Fig.109 - Null Depth $\theta_2^i=90^\circ, \ \phi_2^i=113^\circ$ Statistics

Fig.110 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-51.62	-57.86	43	20.68

Tab.19 - GA Simulation Results Analysis

TEST CASE 19 - 64 Elements - Fixed Scenario, Double Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Double Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

Fig.111 - Thinning Configuration

Fig.115 - Null Depth $\theta_1^i=90^\circ, \ \phi_1^i=42^\circ$ Statistics Fig.116 - D

Fig.116 - Null Depth $\theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$ Statistics

Fig.117 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-47.27	-53.90	38	16.41

Tab.20 - GA Simulation Results Analysis

TEST CASE 20 - 64 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Triple Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ, \ \theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$

Fig.118 - Thinning Configuration

Fig.122 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.123 - Null Depth $\theta_2^i=90^\circ, \, \phi_2^i=113^\circ$ Statistics

Fig.124 - Null Depth $\theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$ Statistics

Fig.125 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-63.65	-42.25	-48.63	47	11.33

Tab.21 - GA Simulation Results Analysis

TEST CASE 21 - 64 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.126 - Thinning Configuration

Fig.130 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.131 - Null Depth $\theta_2^i=90^\circ, \, \phi_2^i=113^\circ$ Statistics

Fig.132 - Null Depth $\theta_3^i=90^\circ, \, \phi_3^i=164^\circ$ Statistics

Fig.133 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-46.23	-45.63	-44.12	42	10.46

Tab.22 - GA Simulation Results Analysis

TEST CASE 22 - 64 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 64
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

- Number of Variables: $X = 64 \ (\alpha_n, n = 1, ..., N)$
- Population: 32
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 64 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.134 - Thinning Configuration

Fig.138 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.139 - Null Depth $\theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$ Statistics

Fig.140 - Null Depth $\theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$ Statistics

Fig.141 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-51.19	-42.42	-49.88	38	11.24

Tab.23 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Single Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.142 - Thinning Configuration

Fig.146 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.147 -	SINR	Statistics
-----------	------	------------

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-81.85	73	46.94

Tab.24 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Single Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.148 - Thinning Configuration

Fig.152 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.153 - SINR Statistics

	$AF(\theta_1^i,\phi_1^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-84.07	69	47.35

Tab.25 - GA Simulation Results Analysis

TEST CASE 10 - 128 Elements - Fixed Scenario, Single Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a single interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 1$
- Interference Direction Of Arrival: $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Single Interference: $\theta^i_1=90^\circ,\,\phi^i_1=42^\circ$

Fig.154 - Thinning Configuration

Fig.158 - Null Depth $\theta_1^i=90^\circ, \, \phi_1^i=42^\circ$ Statistics

	$AF(\theta_1^i, \phi_1^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-84.14	76	47.69

Tab.26 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Double Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.160 - Thinning Configuration

Fig.164 - Null Depth $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ$ Statistics Fig.

Fig.165 - Null Depth $\theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$ Statistics

Fig.166 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-63.12	-51.04	76	20.77

Tab.27 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Double Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.167 - Thinning Configuration

Fig.171 - Null Depth $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ$ Statistics Fig.172 - Null

Fig.172 - Null Depth $\theta_2^i=90^\circ,\,\phi_2^i=113^\circ$ Statistics

Fig.173 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-56.45	-55.82	83	23.10

Tab.28 - GA Simulation Results Analysis

TEST CASE 10 - 128 Elements - Fixed Scenario, Double Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a double interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 2$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Double Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ$

Fig.174 - Thinning Configuration

Fig.178 - Null Depth $\theta_1^i=90^\circ, \, \phi_1^i=42^\circ$ Statistics ~ F

Fig.179 - Null Depth $\theta_2^i=90^\circ, \ \phi_2^i=113^\circ$ Statistics

Fig.180 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i, \phi_2^i)$	Nr. Active Elements	$SINR\left[dB ight]$
GA	-61.87	-64.42	76	29.84

Tab.29 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.00 - 1.00]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Optimization Approach: GA

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.00$
- Maximum Thinning Coefficient: $\eta_{max} = 1.00$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Triple Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ, \ \theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$

Fig.181 - Thinning Configuration

Fig.185 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.186 - Null Depth $\theta_2^i=90^\circ, \, \phi_2^i=113^\circ$ Statistics

Fig.187 - Null Depth $\theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$ Statistics

Fig.188 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-56.23	-50.33	-51.99	82	17.45

Tab.30 - GA Simulation Results Analysis

TEST CASE 23 - 128 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.50 - 0.70]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Optimization Approach: GA

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.50$
- Maximum Thinning Coefficient: $\eta_{max} = 0.70$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Triple Interference: $\theta_1^i = 90^\circ, \ \phi_1^i = 42^\circ, \ \theta_2^i = 90^\circ, \ \phi_2^i = 113^\circ, \ \theta_3^i = 90^\circ, \ \phi_3^i = 164^\circ$

Fig.189 - Thinning Configuration

Fig.193 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.194 - Null Depth $\theta_2^i=90^\circ, \, \phi_2^i=113^\circ$ Statistics

Fig.195 - Null Depth $\theta_3^i=90^\circ, \, \phi_3^i=164^\circ$ Statistics

Fig.196 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-59.71	-47.86	-51.25	82	16.03

Tab.31 - GA Simulation Results Analysis

TEST CASE 10 - 128 Elements - Fixed Scenario, Triple Interference - $\eta \in [0.60 - 0.60]$

Goal

Maximization of the SINR using genetic algorithms (GA) to determine the optimal thinned array configuration, considering a static scenario with a triple interference.

Test Case Description

- Number of Elements N = 128
- Elements Spacing: $d = 0.5\lambda$
- Max Gain Pattern Direction : $\theta^d = 90^\circ$, $\phi^d = 90^\circ$
- Desired Signal Power: $0 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N^I = 3$
- Interference Direction Of Arrival: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Optimization Approach: GA

- Number of Variables: $X = 128 \ (\alpha_n, n = 1, ..., N)$
- Population: 64
- Crossover Probability: 0.9
- Mutation Probability: 0.01
- Number of Generations: 200
- Minimum Thinning Coefficient: $\eta_{min} = 0.60$
- Maximum Thinning Coefficient: $\eta_{max} = 0.60$
- Number of Repetitions for Statistical Analysis: 20

GA - 128 Elements - Triple Interference: $\theta_1^i = 90^\circ$, $\phi_1^i = 42^\circ$, $\theta_2^i = 90^\circ$, $\phi_2^i = 113^\circ$, $\theta_3^i = 90^\circ$, $\phi_3^i = 164^\circ$

Fig.197 - Thinning Configuration

Fig.201 - Null Depth $\theta_1^i=90^\circ,\,\phi_1^i=42^\circ$ Statistics

Fig.202 - Null Depth $\theta_2^i=90^\circ,\,\phi_2^i=113^\circ$ Statistics

Fig.203 - Null Depth $\theta_3^i=90^\circ, \, \phi_3^i=164^\circ$ Statistics

Fig.204 - SINR Statistics

	$AF(\theta_1^i, \phi_1^i)$	$AF(\theta_2^i,\phi_2^i)$	$AF(heta_3^i,\phi_3^i)$	Nr.ActiveElements	$SINR\left[dB ight]$
GA	-68.50	-55.89	-45.59	76	15.18

Tab.32 - GA Simulation Results Analysis

References

- P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems - 25 th Year Special Issue of Inverse Problems, Invited Topical Review, vol. 25, pp. 1-41, Dec. 2009.
- [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [3] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through timemodulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 101-104, 2012.
- [4] M. Benedetti, G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: ideal model and experimental validation in complex interference scenarios," Progress in Electromagnetic Research, PIER 96, pp. 173-191, 2009.
- [5] M. Benedetti, R. Azaro, and A. Massa, "Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios," IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 1939-1947, Jul. 2008.
- [6] M. Benedetti, R. Azaro, and A. Massa, "Experimental validation of a fully-adaptive smart antenna prototype," Electronics Letters, vol. 44, no. 11, pp. 661-662, May 2008.
- [7] R. Azaro, L. Ioriatti, M. Martinelli, M. Benedetti, and A. Massa, "An experimental realization of a fullyadaptive smart antenna," Microwave Opt. Technol. Lett., vol. 50, no. 6, pp. 1715-1716, Jun. 2008.
- [8] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 623-626, 2007.
- [9] M. Benedetti, R. Azaro, D. Franceschini, and A. Massa, "PSO-based real-time control of planar uniform circular arrays," IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 545-548, 2006.
- [10] F. Viani, L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 993-1003, 2010.
- [11] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 10, pp. 5068-5077, October 2013.
- [12] P. Rocca, R. L. Haupt, and A. Massa, "Interference suppression in uniform linear array through a dynamic thinning strategy," IEEE Trans. Antennas Propag., vol. 59, no. 12, pp. 4525-4533, Dec. 2011.