4D Arrays for New Generation MIMO Applications

E. T. Bekele, P. Rocca, A. Massa

Abstract

In this report, an innovative application of 4-D arrays is proposed and assessed. The possibility to simultaneously receive multiple signals impinging on the antenna from different directions such to increase the wireless system throughput by means of a proper definition of the pulse sequence controlling the on-off behavior of the RF switches is investigated.

Introduction

The cost function to be used in the simulations is defined as follows:

$$\begin{split} \Omega &= \eta_1 \Omega_1 - \eta_2 \Omega_2 - \eta_3 \Omega_3 \\ \Omega_1 &= \sum_{h=-H}^{H} \left[\frac{P_d^{(h)}}{P_d^{(h)} + P_u^{(h)} + P_n^{(h)}} \delta(h) \right] \\ \Omega_2 &= \sum_{h=-H}^{H} \left[\left(\frac{P_d^{max} - P_d^{(h)}}{P_d^{max}} \right)^2 \delta(h) \right] \\ \Omega_3 &= \sum_{h=-H}^{H} \left[\left(\frac{SLL^{(h)} - SLL_{ref}^{(h)}}{SLL_{peak}^{(h)} - SLL_{ref}^{(h)}} \right)^2 \Upsilon \left(SLL^{(h)} - SLL_{ref}^{(h)} \right) \delta(h) \right] \\ \mathbf{Cost Function} \end{split}$$

where:

- $P_d^{(h)}$ is the power received in the h^{th} harmonic, from the signal desired in this harmonic.
- $P_u^{(h)} = \sum_{i=0}^{I-1} P_i^{(h)}$ is the sum of power received in the h^{th} harmonic from all signal sources but the $i \neq d$

desired signal in this harmonic.

- $P_n^{(h)} = \frac{1}{2} \underline{W}_{(h)}^H \Phi_n \underline{W}_{(h)}$ is the noise power captured in the h^{th} harmonic.
- $\underline{W}_{(h)}$ is a column vector of complex harmonic element weights, whose n^{th} element $W_{(h)}[n]$ is given as:
 - $W_{(h)}[n] = A_n U_{hn} e^{jhw_p t}$
 - $-A_n$ is complex static element weight.
 - U_{hn} is the complex fourier coefficient of the time modulating function $u_n(t)$.
- $\underline{W}_{(h)}^{H}$ is the hermetian transpose of $\underline{W}_{(h)}$.
- Φ_n is the noise covariance matrix.
- $P_i^{(h)}$ is the power received from signal source *i*, in the h^{th} harmonic.
- P_d^{max} is the maximum of all the desired signals $P_d^{(h)}$.
- $\delta(h) = \{ \begin{array}{cc} 1 & if \ h \ is \ included \ in \ the \ synthesis \\ 0 & otherwise \end{array} \}$
- Υ is the Heaviside function
- $\eta_1 \in [0, 1], \eta_2 \in [0, 1]$ $\eta_3 \in [0, 1]$ are the weights of the components of the cost function.
- $SLL^{(h)}$ is the side lobe level of the h^{th} harmonic beam pattern.
- $SLL_{peak}^{(h)}$ is the peak of the pattern of the h^{th} harmonic beam.
- $SLL_{ref}^{(h)}$ is a reference level in the h^{th} harmonic beam pattern.

Simulation Parameters

The following parameters are common to all simulations.

- Isotropic Array Elements: N = 20
- Uniformly distributed along the z axis: $x_n = 0$, $y_n = 0$, $z_n = \frac{n\lambda}{2}$

- Uniform amplitude weighting of elements: $\alpha_n = 1$
- Reference Side lobe level: $SLL_{ref} = -15 dB$
- Cost function weights: $\eta_1 = 1, \ \eta_{2,} = 1 \ \eta_3 = 1$
- PSO Parameters
 - Number of Variables: $X = 40 (\tau_n, i_n^r, n = 1, 2, \dots, N)$
 - Swarm Size: 40
 - $-\,$ Seed of Random Generator: 2500
 - PSO iterations: 2000
 - w = 0.4
 - $-c_1 = c_2 = 2$
- Signal and Noise parameters
 - Two Signals
 - Harmonic Index: h = 0, 1
 - Amplitude and phase for all Signal Sources: $S_i = 1$
 - Noise Power: $\wp_n = -20 dB$
 - Noise Covariance Matrix: $\Phi_n = \wp_n 1^N$

TEST CASE 1 - Two Signals

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 90^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta = 61.3^{\circ}$
- Uniform phase weighting of elements: $\varphi_n = 0$
- Initial Pulse width¹: $\tau_n = 0.5$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 1 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Results

Fig.1 - Initial Pulse Sequence

Fig.3 - Initial Pattern

Fig.3 - Optimized Pattern

Fig.5 - SINR

Fig.6 - Fitness

TEST CASE 2 - Two Signals - Time Varying Scenario

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 90^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta \in [5^o, 85^o] \cup [95^o, 175^o]$
- Uniform phase weighting of elements: $\varphi_n = 0$
- Initial Pulse width²: $\tau_n = 0.5$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 1 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- *m* is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Results

	SINR [dB]				
	Average	Std.	Min	Max	
Signal $i = 1$	30.19	1.90	21.93	32.60	
Signal $i = 2$	30.97	1.29	21.6	32.57	

TEST CASE 2.a - Two Signals and $\theta_{(h=0)} \neq 90^o$

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 47^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta = 120^{\circ}$
- Initial Pulse width³: $\tau_n = 0.5$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 1 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Results

 0°

180^o

180^o

0

Fig.15 - SINR

Fig.16 - Fitness

TEST CASE 2.b - Two Signals and $\theta_{(h=0)} \neq 90^o$

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 50^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta = 30^{\circ}$
- Initial Pulse width⁴: $\tau_n = 0.5$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 1 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Results

Fig.20 - Initial Pattern

TEST CASE 3 - Three Signals

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 90^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta = 115.66^{\circ}$
- Signal i = 2, desired in the harmonic frequency, h = 2 with DOA: $\theta = 150^{\circ}$
- Uniform phase weighting of elements: $\varphi_n = 0$
- Initial Pulse width⁵: $\tau_n = 0.25$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 2 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Fig.25 - Optimized Pulse Sequence

Fig.26 - Initial Pattern

Fig.27 - Optimized Pattern

TEST CASE 4 - Four Signals

Test Case Description

- Signal i = 0, desired in the fundamental frequency, h = 0, with DOA: $\theta = 90^{\circ}$
- Signal i = 1, desired in the harmonic frequency, h = 1 with DOA: $\theta = 65.8^{\circ}$
- Signal i = 2, desired in the harmonic frequency, h = 2 with DOA: $\theta = 35^{\circ}$
- Signal i = 3, desired in the harmonic frequency, h = 3 with DOA: $\theta = 140.5^{\circ}$
- Uniform phase weighting of elements: $\varphi_n = 0$
- Initial Pulse width⁶: $\tau_n = \frac{1}{6}$
- Initial Pulse shift: $i_n^r = \frac{\varphi_n}{2\pi h} + \frac{\beta z_n \cos(\theta^i)}{2\pi h} \frac{\tau_n}{2} \frac{m}{h}$

- φ_n phase of the array element weights
- z_n is the z coordinate of the elements.
- h = 2 is the harmonic index in which signal *i* will be received, and θ^i is the DOA of this signal. The initial pattern in the h^{th} harmonic will be directed to this angle.
- *m* is an integer chosen such that the constraint, $0 \le i_n^r \le 1$, is fulfilled.

Results

Fig.30 - Initial Pulse Sequence

Fig.32 - Initial Pattern

Fig.33 - Optimized Pattern

Fig.34 - SINR

Fig.35 - Fitness

	h	t = 0	h = 1		
	Initial	Optimized	Initial	Optimized	
$P(61^o)\left[dB\right]$	-27.23	-38.59	-3.92	-0.5	
$P(90^o) \left[dB \right]$	0	0	-31.01	-52.14	
$SLL\left[dB ight]$	-13.19	-21.7	-17.11	-21.6	
$SINR\left[dB ight]$	26.37	30.88	26.37	31.58	

Table I: SLL, Null Depth, and SINR for pattern with two signals

Two Signals - Non Broad Side

	h	t = 0	h = 1		
	Initial	Optimized	Initial	Optimized	
$P(47^o) \left[dB \right]$	0	0	-34.86	-42.40	
$P(120^o) \left[dB \right]$	-30.87	-38.29	-3.92	-0.46	
$SLL\left[dB ight]$	-13.19	-23.62	-17.11	-23.23	
$SINR\left[dB ight]$	28.93	31.43	28.93	31.31	

Table I: SLL, Null Depth, and SINR for pattern with two signals Non-Broad-Side

Three Signals

	h	v = 0	h = 1		h = 2	
	Initial	Optimized	Initial	Optimized	Initial	Optimized
$P(90^o) \left[dB \right]$	0	0	-24.08	-48.27	-31.04	-34.50
$P(116^o) \left[dB \right]$	-23.28	-51.13	-0.91	-0.20	-27.23	-40.79
$P(150^o) \left[dB \right]$	-26.95	-44.33	-24.23	-39.82	-3.92	-0.80
$SLL\left[dB ight]$	-13.19	-22.85	-14.10	-22.80	-17.11	-22.44
$SINR\left[dB ight]$	21.43	32.17	20.06	31.69	21.43	29.67

Table I: SLL, Null Depth, and SINR for pattern with three signals

Four Signals

	h	v = 0	h	v = 1	h	n = 2	h	n = 3
	Initial	Optimized	Initial	Optimized	Initial	Optimized	Initial	Optimized
$P(35^o) \left[dB \right]$	-30.68	-39.09	-32.71	-42.93	-1.65	-0.39	-35.90	-35.41
$P(65^{o})[dB]$	-32.35	-43.00	-0.40	-0.097	-33.60	-38.15	-34.44	-42.28
$P(90^o) \left[dB \right]$	0	0	-33.34	-39.89	-32.61	-42.67	-31.67	-33.26
$P(140^o) \left[dB \right]$	-27.57	-38.63	-31.05	-38.33	-33.89	-41.48	-3.92	-0.89
$SLL\left[dB ight]$	-13.19	-22.56	-13.59	-22.27	-14.84	-21.70	-17.11	-20.86
$SINR\left[dB ight]$	24.27	30.59	25.87	30.71	25.87	30.57	24.28	28.06

Table I: SLL and Null Depth for pattern with four signals

Two Signals - Optimization only on h = 0

(b)

Figure. xxx., "Pulse Sequences and Pattern"

	h = 0			
	Initial	Optimized		
$P(61^o)\left[dB\right]$	-27.23	-65.15		
$P(90^{o})[dB]$	0	0		
$SLL\left[dB ight]$	-13.19	-29.48		
$SINR\left[dB ight]$	26.37	32.20		

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer

Figure. xxx., "Pulse Sequences and Pattern"

	h = 0			
	Initial	Optimized		
$P(47^o) \left[dB \right]$	0	0		
$P(120^o) \left[dB \right]$	-30.87	-65.77		
$SLL\left[dB ight]$	-13.19	-29.73		
$SINR\left[dB ight]$	28.93	32.29		

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer Non-Broad-Side

Three Signals - Optimization only on h = 0

(b)

Figure. xxx., "Pulse Sequences and Pattern"

	h = 0			
	Initial	Optimized		
$P(90^o) \left[dB \right]$	0	0		
$P(116^o) \left[dB \right]$	-23.28	-69.22		
$P(150^o) \left[dB \right]$	-26.95	-73.89		
$SLL\left[dB ight]$	-13.19	-29.82		
$SINR\left[dB ight]$	21.43	32.24		

Table I: SLL, Null Depth, and SINR for pattern with One Signal and two interferers

Four Signals - Optimization only on h = 0

(b)

Figure. xxx., "Pulse Sequences and Pattern"

	h = 0		
	Initial	Optimized	
$P(35^o) \left[dB \right]$	-30.68	-74.24	
$P(65^{o})[dB]$	-32.35	-78.71	
$P(90^o) \left[dB \right]$	0	0	
$P(140^o) \left[dB \right]$	-27.57	-69.54	
$SLL\left[dB ight]$	-13.19	-29.98	
$SINR\left[dB ight]$	24.27	32.27	

Table I: SLL and Null Depth for pattern with One Signal and three interferers

Fig. xxx, "SINR Comparison."

Additional Data:

Average of Time per time step = 738.385sec.

References

- P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [2] E. T. Bekele, L. Poli, M. D'Urso, P. Rocca, and A. Massa, "Pulse-shaping strategy for time modulated arrays - Analysis and design," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3525-3537, July 2013.
- [3] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3246-3254, Sep. 2011.
- [4] L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1408-1411, Apr. 2010.
- [5] P. Rocca, L. Poli, and A. Massa, "Instantaneous directivity optimization in time-modulated array receivers," IET Microwaves, Antennas & Propagation, vol. 6, no. 14, pp. 1590-1597, Nov. 2012.
- [6] P. Rocca, L. Poli, L. Manica, and A. Massa, "Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation," IET Radar, Sonar & Navigation, vol. 6, no. 6, pp. 432-442, 2012.
- [7] L. Poli, P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microwaves, Antennas & Propagation, vol. 6, no. 2, pp. 214-222, 2012.
- [8] L. Poli, P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays Analysis and optimization of the sideband radiations," IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1165-1171, 2010.
- [9] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 827-838, 2010.
- [10] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009.
- [11] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, Mar. 2014.
- [12] P. Rocca, Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4D arrays as enabling technology for cognitive radio systems," IEEE Transactions on Antennas and Propagation - Special Issue on "Antenna Systems and Propagation for Cognitive Radio," vol. 62, no. 3, pp. 1102-1116, Mar. 2014.