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Abstract

In this report, an innovative application of 4-D arrays is proposed and assessed. The
possibility to simultaneously receive multiple signals impinging on the antenna from
different directions such to increase the wireless system throughput by means of a
proper definition of the pulse sequence controlling the on-off behavior of the RF
switches is investigated.



Introduction

The cost function to be used in the simulations is defined as follows:
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Cost Function

° Péh) is the power received in the A*" harmonic, from the signal desired in this harmonic.

° P&h) = ZI fl 0 Pi(h) is the sum of power received in the A*" harmonic from all signal sources but the
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desired signal in this harmonic.

° P,Sh) = 1&51)@"&(,1) is the noise power captured in the R harmonic.
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o W, is a column vector of complex harmonic element weights, whose n'" element W [n] is given as:

— W(h) [TL] = AnUhnejhwpt

— A, is complex static element weight.

— Upyp, is the complex fourier coefficient of the time modulating function w,,(t).

° mgl) is the hermetian transpose of E(h).
e &, is the noise covariance matrix.

h) . . . . .
° Pi( ) is the power received from signal source i, in the h*" harmonic.

e P is the maximum of all the desired signals P;h).

1 if hisincluded in the synthesis
e o(h) ={ .
0 otherwise

e T is the Heaviside function

e 11 €[0,1], m2, € [0,1] 3 € [0, 1] are the weights of the components of the cost function.

e SLLMis the side lobe level of the A" harmonic beam pattern.

n)

° SLL;eak is the peak of the pattern of the h** harmonic beam.

° SLLE};} is a reference level in the A*" harmonic beam pattern.

Simulation Parameters

The following parameters are common to all simulations.

e Isotropic Array Elements: N = 20

e Uniformly distributed along the z axis: =, =0, ,y, =0, 2z, = ”7’\



e Uniform amplitude weighting of elements: «,, =1

Reference Side lobe level: SLL,.r = —15dB

Cost function weights: 71 =1, 2, =113 =1

e PSO Parameters

Number of Variables: X =40 (7,,, i, n=1, 2, ...
— Swarm Size: 40

— Seed of Random Generator: 2500

PSO iterations: 2000

—w=0.4

— C1 = Cg = 2
e Signal and Noise parameters

— Two Signals

Harmonic Index: h =0, 1
— Amplitude and phase for all Signal Sources: S; =1
— Noise Power: p, = —20dB

Noise Covariance Matrix: ®,, = pnlN



TEST CASE 1 - Two Signals

Test Case Description
e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: 6 = 90°

Signal 7 = 1, desired in the harmonic frequency, h = 1with DOA: § = 61.3°

Uniform phase weighting of elements: ¢,, =0

Initial Pulse width': 7,, = 0.5

L. el Pn ﬁzncos(ei)ir_ni_
e Initial Pulse shift: i, = £5 + =5 — — 2 —

where:

e v, phase of the array element weights
e 72, is the z coordinate of the elements.

e h =1 is the harmonic index in which signal i will be received, and 6’ is the DOA of this signal. The initial

pattern in the A" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <] <1, is fulfilled.

LF(h)(9) = ZN_Ol AnUy,, edBzncos(9)
ne

Unn = Tnsinc (hmtn) e_jh”(%:l'*m).
The value 7, = 0.5 maximizes the array factor, thus the power of the first harmonic, |h| = 1.
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TEST CASE 2 - Two Signals - Time Varying Scenario

Test Case Description

e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: 6 = 90°
e Signal i = 1, desired in the harmonic frequency, h = 1with DOA: 8 € [5°,85°]U[95°, 175°]
e Uniform phase weighting of elements: ¢, =0

e Initial Pulse width?: 7,, = 0.5

i+ e cr o PBzacos(07) "
Initial Pulse shift: i}, = 25 + =52 — T — o2

where:

e ¢, phase of the array element weights
e 2, is the z coordinate of the elements.

e h =1 is the harmonic index in which signal i will be received, and 6’ is the DOA of this signal. The initial

pattern in the A*" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <] <1, is fulfilled.

2p () (9) = ZN‘OI AnUy,, edBzncos(9)
ne

Unn = Tnsinc (hmtn) e_jh”(%:l'*m).
The value 7, = 0.5 maximizes the array factor, thus the power of the first harmonic, |h| = 1.
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TEST CASE 2.a - Two Signals and 0,—j) # 90°

Test Case Description
e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: § = 47°
e Signal ¢ = 1, desired in the harmonic frequency, h = 1with DOA: § = 120°
e Initial Pulse width3: 7,, = 0.5
cos(0%)

s e ST Pn Bzn n
e Initial Pulse shift: i}, = 25 + =5 — — 2+ — ¢

where:

e ¢, phase of the array element weights
e 2, is the z coordinate of the elements.

e h = 1is the harmonic index in which signal i will be received, and #° is the DOA of this signal. The initial

pattern in the A*" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <] <1, is fulfilled.

3p ) () = Zf:_ol AnUy,, edBzncos(9)

Unn = Tnsinc (hmtn) e_jh”(%:l'*m).
The value 7, = 0.5 maximizes the array factor, thus the power of the first harmonic, |h| = 1.
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TEST CASE 2.b - Two Signals and 0,—g) # 90°

Test Case Description
e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: § = 50°
e Signal ¢ = 1, desired in the harmonic frequency, h = 1with DOA: 6 = 30°
e Initial Pulse width?: 7,, = 0.5
cos(0%)

s e ST Pn Bzn n
e Initial Pulse shift: i}, = 25 + =5 — — 2+ — 2

where:

e ¢, phase of the array element weights
e 2, is the z coordinate of the elements.

e h = 1is the harmonic index in which signal i will be received, and #° is the DOA of this signal. The initial

pattern in the A*" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <] <1, is fulfilled.

1p(h) () = ZN_Ol AnUy,, edBzncos(9)
ne

Unn = Tnsinc (hmtn) e_jh”(%:l'*m).
The value 7, = 0.5 maximizes the array factor, thus the power of the first harmonic, |h| = 1.
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TEST CASE 3 - Three Signals

Test Case Description

e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: 6 = 90°
e Signal ¢ = 1, desired in the harmonic frequency, h = 1with DOA: § = 115.66°
e Signal ¢ = 2, desired in the harmonic frequency, h = 2with DOA: § = 150°

e Uniform phase weighting of elements: ¢, =0

e Initial Pulse width®: 7,, = 0.25

1ti e or . Pn Bz cos(8") n
Initial Pulse shift: i}, = 25 + =52 — T — 22

where:

e ¢, phase of the array element weights
e 2, is the z coordinate of the elements.

e h = 2 is the harmonic index in which signal i will be received, and #° is the DOA of this signal. The initial

pattern in the A*" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <] <1, is fulfilled.

5p(h)(9) = Zf:_ol AnUy,, edBzncos(9)

Unn = Tnsinc (hmtn) e_jh”(%:l'*m).
The value 7, = 0.25 maximizes the array factor, thus the power of the first harmonic, |h| = 2.
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TEST CASE 4 - Four Signals

Test Case Description

e Signal ¢ = 0, desired in the fundamental frequency, h = 0, with DOA: 6 = 90°
e Signal i = 1, desired in the harmonic frequency, h = 1with DOA: 0§ = 65.8°

e Signal ¢ = 2, desired in the harmonic frequency, h = 2with DOA: 0 = 35°

e Signal ¢ = 3, desired in the harmonic frequency, h = 3with DOA: § = 140.5°

e Uniform phase weighting of elements: ¢, =0

Initial Pulse width®: 7, = 1

6
o Initial Pulse shift: i, = £  Zcosl) _ra m
where:

e v, phase of the array element weights
e 2, is the z coordinate of the elements.

e h = 2is the harmonic index in which signal i will be received, and 6% is the DOA of this signal. The initial

pattern in the A" harmonic will be directed to this angle.

e m is an integer chosen such that the constraint, 0 <+ <1, is fulfilled.

6 (h)(9) = Zf:_ol AnUy,, edBzncos(9)
Unn = Tnsinc (hmtn) e—ihm(2in+7n)

The value 7, = % maximizes the array factor, thus the power of the harmonic, |h| = 3.
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Two Signals

| | h=0 h=1
Initial | Optimized | Initial | Optimized
P(61°)[dB] | —27.23 —38.59 —3.92 -0.5
P(90°) [dB] 0 0 —31.01 | —52.14
SLL[dB] | -1319 | —217 | -1711| —216
SINR[dB] 26.37 30.88 26.37 31.58

Table I: SLL, Null Depth, and SINR for pattern with two signals
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Two Signals - Non Broad Side

| | h=0 h=1
Initial | Optimized | Initial | Optimized
P(47°) [dB] 0 0 —34.86 | —42.40
P(120°) [dB] | —30.87 —38.29 —3.92 —0.46
SLL[dB] —13.19 —23.62 —17.11 —23.23
SINR[dB] | 28.93 31.43 28.93 31.31

Table I: SLL, Null Depth, and SINR for pattern with two signals Non-Broad-Side
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Three Signals

| h=0 h=1 h=2
Initial | Optimized | Initial | Optimized | Initial | Optimized
P(90°) [dB] 0 0 —24.08 —48.27 —31.04 —34.50
P(116°) [dB] | —23.28 —51.13 —0.91 —0.20 —27.23 —40.79
P(150°) [dB] | —26.95 —44.33 —24.23 —39.82 —3.92 —0.80
SLL [dB] —13.19 —22.85 —14.10 —22.80 —17.11 —22.44
SINR[dB] 21.43 32.17 20.06 31.69 21.43 29.67

Table I: SLL, Null Depth, and SINR for pattern with three signals
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Four Signals

| h=0 h=1 h=2 h=3
Initial | Optimized | Initial | Optimized | Initial | Optimized | Initial | Optimized

P(35°)[dB] | —30.68 —39.09 —32.71 —42.93 —1.65 -0.39 —35.90 —35.41
P(65°)[dB] | —32.35 —43.00 —0.40 —0.097 —33.60 —38.15 —34.44 —42.28
P(90°) [dB] 0 0 —33.34 —39.89 —32.61 —42.67 —31.67 —33.26
P(140°) [dB] | —27.57 —38.63 —31.05 —38.33 —33.89 —41.48 —3.92 —0.89

SLL[dB] —13.19 —22.56 —13.59 —22.27 —14.84 —21.70 —17.11 —20.86
SINR[dB] 24.27 30.59 25.87 30.71 25.87 30.57 24.28 28.06

Table I: SLL and Null Depth for pattern with four signals
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| T

Initial | Optimized

P(61°)[dB] | —27.23 | —65.15
P(90°)[dB] | 0 0
SLL[dB] | —13.19 | —29.48

SINRI[dB] | 26.37 32.20

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer
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Two Signals - Non Broad Side - Optimization only on h =0
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| T

Initial | Optimized
P(47°) [dB] 0 0
P(120°) [dB] | —30.87 —65.77
SLL[dB] —13.19 —29.73
SINR[dB] 28.93 32.29

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer Non-Broad-Side
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Three Signals - Optimization only on h = 0
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h=0

Initial | Optimized
P(90°) [dB] 0 0
P(116°) [dB] | —23.28 —69.22
P(150°) [dB] | —26.95 —173.89
SLL[dB] —13.19 —29.82
SINR[dB] 21.43 32.24

Table I SLL, Null Depth, and SINR for pattern with One Signal and two interferers
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Four Signals - Optimization only on h =0
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| T

Initial | Optimized
P(35°)[dB] | —30.68 —74.24
P(65°)[dB] | —32.35 —78.71
P(90°) [dB] 0 0
P(140°) [dB] | —27.57 —69.54
SLL[dB] —13.19 —29.98
SINR[dB] 24.27 32.27

Table I: SLL and Null Depth for pattern with One Signal and three interferers
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Additional Data:

Average of Time per time step = 738.385sec.
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