4D Arrays for New Generation MIMO Applications

E. T. Bekele, P. Rocca, A. Massa

Abstract

In this report, an innovative application of 4-D arrays is proposed and assessed. The possibility to simultaneously receive multiple signals impinging on the antenna from different directions such to increase the wireless system throughput by means of a proper definition of the pulse sequence controlling the on-off behavior of the RF switches is investigated.

Introduction

The cost function to be used in the simulations is defined as follows:

$$
\begin{gathered}
\Omega=\eta_{1} \Omega_{1}-\eta_{2} \Omega_{2}-\eta_{3} \Omega_{3} \\
\Omega_{1}=\sum_{h=-H}^{H}\left[\frac{P_{d}^{(h)}}{P_{d}^{(h)}+P_{u}^{(h)}+P_{n}^{(h)}} \delta(h)\right] \\
\Omega_{2}=\sum_{h=-H}^{H}\left[\left(\frac{P_{d}^{\text {max }}-P_{d}^{(h)}}{P_{d}^{\text {max }}}\right)^{2} \delta(h)\right] \\
\Omega_{3}=\sum_{h=-H}^{H}\left[\left(\frac{S L L^{(h)}-S L L_{r e f}^{(h)}}{S L L_{\text {peak }}^{(h)}-S L L_{r e f}^{(h)}}\right)^{2} \Upsilon\left(S L L^{(h)}-S L L_{r e f}^{(h)}\right) \delta(h)\right.
\end{gathered}
$$

Cost Function

where:

- $P_{d}^{(h)}$ is the power received in the $h^{t h}$ harmonic, from the signal desired in this harmonic.
- $P_{u}^{(h)}=\sum_{i=0}^{I-1} P_{i}^{(h)}$ is the sum of power received in the $h^{t h}$ harmonic from all signal sources but the

$$
i \neq d
$$

desired signal in this harmonic.

- $P_{n}^{(h)}=\frac{1}{2} \underline{W}_{(h)}^{H} \Phi_{n} \underline{W}_{(h)}$ is the noise power captured in the $h^{t h}$ harmonic.
- $\underline{W}_{(h)}$ is a column vector of complex harmonic element weights, whose $n^{t h}$ element $W_{(h)}[n]$ is given as:
$-W_{(h)}[n]=A_{n} U_{h n} e^{j h w_{p} t}$
- A_{n} is complex static element weight.
- $U_{h n}$ is the complex fourier coefficient of the time modulating function $u_{n}(t)$.
- $\underline{W}_{(h)}^{H}$ is the hermetian transpose of $\underline{W}_{(h)}$.
- Φ_{n} is the noise covariance matrix.
- $P_{i}^{(h)}$ is the power received from signal source i, in the $h^{\text {th }}$ harmonic.
- $P_{d}^{\max }$ is the maximum of all the desired signals $P_{d}^{(h)}$.
- $\delta(h)=\left\{\begin{array}{lc}1 & \text { if } h \text { is included in the synthesis } \\ 0 & \text { otherwise }\end{array}\right.$
- Υ is the Heaviside function
- $\eta_{1} \in[0,1], \eta_{2}, \in[0,1] \eta_{3} \in[0,1]$ are the weights of the components of the cost function.
- $S L L^{(h)}$ is the side lobe level of the $h^{t h}$ harmonic beam pattern.
- $S L L_{\text {peak }}^{(h)}$ is the peak of the pattern of the $h^{t h}$ harmonic beam.
- $S L L_{r e f}^{(h)}$ is a reference level in the $h^{t h}$ harmonic beam pattern.

Simulation Parameters

The following parameters are common to all simulations.

- Isotropic Array Elements: $N=20$
- Uniformly distributed along the z axis: $x_{n}=0, y_{n}=0, z_{n}=\frac{n \lambda}{2}$
- Uniform amplitude weighting of elements: $\alpha_{n}=1$
- Reference Side lobe level: $S L L_{r e f}=-15 d B$
- Cost function weights: $\eta_{1}=1, \eta_{2}=1 \eta_{3}=1$
- PSO Parameters
- Number of Variables: $X=40\left(\tau_{n}, i_{n}^{r}, n=1,2, \ldots, N\right)$
- Swarm Size: 40
- Seed of Random Generator: 2500
- PSO iterations: 2000
$-w=0.4$
$-c_{1}=c_{2}=2$
- Signal and Noise parameters
- Two Signals
- Harmonic Index: $h=0,1$
- Amplitude and phase for all Signal Sources: $S_{i}=1$
- Noise Power: $\wp_{n}=-20 d B$
- Noise Covariance Matrix: $\Phi_{n}=\wp_{n} 1^{N}$

TEST CASE 1 - Two Signals

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=90^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta=61.3^{\circ}$
- Uniform phase weighting of elements: $\varphi_{n}=0$
- Initial Pulse width ${ }^{1}: \tau_{n}=0.5$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=1$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{\text {th }}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^0]
Results

Fig. 1 - Initial Pulse Sequence

Fig. 3 - Initial Pattern

Fig. 2 - Optimized Pulse Sequence

Fig. 3 - Optimized Pattern

Fig. 5 - SINR

Fig. 6 - Fitness

TEST CASE 2 - Two Signals - Time Varying Scenario

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=90^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta \in\left[5^{\circ}, 85^{\circ}\right] \cup\left[95^{\circ}, 175^{\circ}\right]$
- Uniform phase weighting of elements: $\varphi_{n}=0$
- Initial Pulse width ${ }^{2}: \tau_{n}=0.5$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=1$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{\text {th }}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^1]
Results

Fig. 7 - Time Varying DOA

Fig. 8 - Time Varying SINR

Fig. 9 - Filtered Time Varying SINR

	SINR $[d B]$			
	Average	Std.	Min	Max
Signal $i=1$	30.19	1.90	21.93	32.60
Signal $i=2$	30.97	1.29	21.6	32.57

TEST CASE 2.a - Two Signals and $\theta_{(h=0)} \neq 90^{\circ}$

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=47^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta=120^{\circ}$
- Initial Pulse width ${ }^{3}: \tau_{n}=0.5$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=1$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{\text {th }}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^2]
Results

Fig. 10 - Element Weight Phase

Fig. 11 - Initial Pulse Sequence

Fig. 13 - Initial Pattern

Fig. 12 - Optimized Pulse Sequence

Fig. 14 - Optimized Pattern

Fig. 15 - SINR

Fig. 16 - Fitness

TEST CASE 2.b - Two Signals and $\theta_{(h=0)} \neq 90^{\circ}$

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=50^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta=30^{\circ}$
- Initial Pulse width ${ }^{4}: \tau_{n}=0.5$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=1$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{\text {th }}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^3]
Results

Fig. 17 - Element Weight Phase

Fig. 18 - Initial Pulse Sequence

Fig. 20 - Initial Pattern

Fig. 19 - Optimized Pulse Sequence

Fig. 21 - Optimized Pattern

Fig. 22 - SINR

Fig. 23 - Fitness

TEST CASE 3 - Three Signals

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=90^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta=115.66^{\circ}$
- Signal $i=2$, desired in the harmonic frequency, $h=2$ with DOA: $\theta=150^{\circ}$
- Uniform phase weighting of elements: $\varphi_{n}=0$
- Initial Pulse width ${ }^{5}: \tau_{n}=0.25$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=2$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{t h}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^4]
Results

Fig. 24 - Initial Pulse Sequence

Fig. 26 - Initial Pattern

Fig. 25 - Optimized Pulse Sequence

Fig. 27 - Optimized Pattern

Fig. 28 - SINR

Fig. 29 - Fitness

TEST CASE 4 - Four Signals

Test Case Description

- Signal $i=0$, desired in the fundamental frequency, $h=0$, with DOA: $\theta=90^{\circ}$
- Signal $i=1$, desired in the harmonic frequency, $h=1$ with DOA: $\theta=65.8^{\circ}$
- Signal $i=2$, desired in the harmonic frequency, $h=2$ with DOA: $\theta=35^{\circ}$
- Signal $i=3$, desired in the harmonic frequency, $h=3$ with DOA: $\theta=140.5^{\circ}$
- Uniform phase weighting of elements: $\varphi_{n}=0$
- Initial Pulse width ${ }^{6}$: $\tau_{n}=\frac{1}{6}$
- Initial Pulse shift: $i_{n}^{r}=\frac{\varphi_{n}}{2 \pi h}+\frac{\beta z_{n} \cos \left(\theta^{i}\right)}{2 \pi h}-\frac{\tau_{n}}{2}-\frac{m}{h}$
where:
- φ_{n} phase of the array element weights
- z_{n} is the z coordinate of the elements.
- $h=2$ is the harmonic index in which signal i will be received, and θ^{i} is the DOA of this signal. The initial pattern in the $h^{\text {th }}$ harmonic will be directed to this angle.
- m is an integer chosen such that the constraint, $0 \leq i_{n}^{r} \leq 1$, is fulfilled.

[^5]
Results

Fig. 30 - Initial Pulse Sequence

Fig. 32 - Initial Pattern

Fig. 31 - Optimized Pulse Sequence

Fig. 33 - Optimized Pattern

Fig. 34 - SINR

Fig. 35 - Fitness

Two Signals

	$h=0$		$h=1$	
	Initial	Optimized	Initial	Optimized
$P\left(61^{\circ}\right)[d B]$	-27.23	-38.59	-3.92	-0.5
$P\left(90^{\circ}\right)[d B]$	0	0	-31.01	-52.14
$S L L[d B]$	-13.19	-21.7	-17.11	-21.6
$S I N R[d B]$	26.37	30.88	26.37	31.58

Table I: SLL, Null Depth, and SINR for pattern with two signals

Two Signals - Non Broad Side

	$h=0$		$h=1$	
	Initial	Optimized	Initial	Optimized
$P\left(47^{\circ}\right)[d B]$	0	0	-34.86	-42.40
$P\left(120^{\circ}\right)[d B]$	-30.87	-38.29	-3.92	-0.46
$S L L[d B]$	-13.19	-23.62	-17.11	-23.23
$S I N R[d B]$	28.93	31.43	28.93	31.31

Table I: SLL, Null Depth, and SINR for pattern with two signals Non-Broad-Side

Three Signals

	$h=0$		$h=1$		$h=2$	
	Initial	Optimized	Initial	Optimized	Initial	Optimized
$P\left(90^{\circ}\right)[d B]$	0	0	-24.08	-48.27	-31.04	-34.50
$P\left(116^{\circ}\right)[d B]$	-23.28	-51.13	-0.91	-0.20	-27.23	-40.79
$P\left(150^{\circ}\right)[d B]$	-26.95	-44.33	-24.23	-39.82	-3.92	-0.80
$S L L[d B]$	-13.19	-22.85	-14.10	-22.80	-17.11	-22.44
$S I N R[d B]$	21.43	32.17	20.06	31.69	21.43	29.67

Table I: SLL, Null Depth, and SINR for pattern with three signals

Four Signals

	$h=0$		$h=1$		$h=2$		$h=3$	
	Initial	Optimized	Initial	Optimized	Initial	Optimized	Initial	Optimized
$P\left(35^{\circ}\right)[d B]$	-30.68	-39.09	-32.71	-42.93	-1.65	-0.39	-35.90	-35.41
$P\left(65^{\circ}\right)[d B]$	-32.35	-43.00	-0.40	-0.097	-33.60	-38.15	-34.44	-42.28
$P\left(90^{\circ}\right)[d B]$	0	0	-33.34	-39.89	-32.61	-42.67	-31.67	-33.26
$P\left(140^{\circ}\right)[d B]$	-27.57	-38.63	-31.05	-38.33	-33.89	-41.48	-3.92	-0.89
$S L L[d B]$	-13.19	-22.56	-13.59	-22.27	-14.84	-21.70	-17.11	-20.86
$S I N R[d B]$	24.27	30.59	25.87	30.71	25.87	30.57	24.28	28.06

Table I: SLL and Null Depth for pattern with four signals

Two Signals - Optimization only on $h=0$

(a)

(b)

Figure. $x x x$., "Pulse Sequences and Pattern"

	$h=0$	
	Initial	Optimized
$P\left(61^{\circ}\right)[d B]$	-27.23	-65.15
$P\left(90^{\circ}\right)[d B]$	0	0
$S L L[d B]$	-13.19	-29.48
$S I N R[d B]$	26.37	32.20

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer

Two Signals - Non Broad Side - Optimization only on $h=0$

(a)

(b)

Figure. $x x x$., "Pulse Sequences and Pattern"

	$h=0$	
	Initial	Optimized
$P\left(47^{\circ}\right)[d B]$	0	0
$P\left(120^{\circ}\right)[d B]$	-30.87	-65.77
$S L L[d B]$	-13.19	-29.73
$S I N R[d B]$	28.93	32.29

Table I: SLL, Null Depth, and SINR for pattern with One Signal One Interferer Non-Broad-Side

Three Signals - Optimization only on $h=0$

Figure. $x x x$., "Pulse Sequences and Pattern"

	$h=0$	
	Initial	Optimized
$P\left(90^{\circ}\right)[d B]$	0	0
$P\left(116^{\circ}\right)[d B]$	-23.28	-69.22
$P\left(150^{\circ}\right)[d B]$	-26.95	-73.89
$S L L[d B]$	-13.19	-29.82
$S I N R[d B]$	21.43	32.24

Table I: SLL, Null Depth, and SINR for pattern with One Signal and two interferers

Four Signals - Optimization only on $h=0$

(a)

(b)

Figure. $x x x$., "Pulse Sequences and Pattern"

	$h=0$	
	Initial	Optimized
$P\left(35^{\circ}\right)[d B]$	-30.68	-74.24
$P\left(65^{\circ}\right)[d B]$	-32.35	-78.71
$P\left(90^{\circ}\right)[d B]$	0	0
$P\left(140^{\circ}\right)[d B]$	-27.57	-69.54
$S L L[d B]$	-13.19	-29.98
$S I N R[d B]$	24.27	32.27

Table I: SLL and Null Depth for pattern with One Signal and three interferers

SINR $^{\mathrm{h}}$ [dB]

Additional Data:

Average of Time per time step $=738.385 \mathrm{sec}$.

References

[1] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011.
[2] E. T. Bekele, L. Poli, M. D’Urso, P. Rocca, and A. Massa, "Pulse-shaping strategy for time modulated arrays - Analysis and design," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3525-3537, July 2013.
[3] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3246-3254, Sep. 2011.
[4] L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1408-1411, Apr. 2010.
[5] P. Rocca, L. Poli, and A. Massa, "Instantaneous directivity optimization in time-modulated array receivers," IET Microwaves, Antennas \& Propagation, vol. 6, no. 14, pp. 1590-1597, Nov. 2012.
[6] P. Rocca, L. Poli, L. Manica, and A. Massa, "Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation," IET Radar, Sonar \& Navigation, vol. 6, no. 6, pp. 432-442, 2012.
[7] L. Poli, P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microwaves, Antennas \& Propagation, vol. 6, no. 2, pp. 214-222, 2012.
[8] L. Poli, P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays - Analysis and optimization of the sideband radiations," IET Microwaves, Antennas \& Propagation, vol. 4, no. 9, pp. 1165-1171, 2010.
[9] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 827-838, 2010.
[10] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009.
[11] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar \& Navigation, vol. 8, no. 3, pp. 195-201, Mar. 2014.
[12] P. Rocca, Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4D arrays as enabling technology for cognitive radio systems," IEEE Transactions on Antennas and Propagation - Special Issue on "Antenna Systems and Propagation for Cognitive Radio," vol. 62, no. 3, pp. 1102-1116, Mar. 2014.

[^0]: ${ }^{1} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=0.5$ maximizes the array factor, thus the power of the first harmonic, $|h|=1$.

[^1]: ${ }^{2} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=0.5$ maximizes the array factor, thus the power of the first harmonic, $|h|=1$.

[^2]: ${ }^{3} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=0.5$ maximizes the array factor, thus the power of the first harmonic, $|h|=1$.

[^3]: ${ }^{4} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=0.5$ maximizes the array factor, thus the power of the first harmonic, $|h|=1$.

[^4]: ${ }^{5} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=0.25$ maximizes the array factor, thus the power of the first harmonic, $|h|=2$.

[^5]: ${ }^{6} F^{(h)}(\theta)=\sum_{n=0}^{N-1} A_{n} U_{h n} e^{j \beta z_{n} \cos (\theta)}$
 $U_{h n}=\tau_{n} \operatorname{sinc}\left(h \pi \tau_{n}\right) e^{-j h \pi\left(2 i_{n}^{r}+\tau_{n}\right)}$.
 The value $\tau_{n}=\frac{1}{6}$ maximizes the array factor, thus the power of the harmonic, $|h|=3$.

