Adaptive Time-Modulated Arrays in Time-Varying Scenarios

L. Poli, P. Rocca, G. Oliveri, A. Massa

Abstract

In this report, the use of TMAs is proposed for adaptive antenna systems required to suppress undesired signals whose number and directions vary in time. Toward this purpose, the ON–OFF TMA sequence is optimized with a suitable global optimization technique that requires a limited computational burden and enables real-time reconfigurations.

Formulazione Matematica

Modello SINR

Si consideri un array lineare composto da N elementi spaziati uniformemente lungo l'asse x: il segnale desiderato ricevuto all'elemento n-esimo dell'antenna può essere espresso come

$$S_n^d(t) = p_d(t)e^{j\beta_n^d} \quad n = 1, ..., N$$
(1)

dove $\beta_n^d = (2\pi/\lambda)(u_d x_n)$, $u_d = \sin \theta_d \cos \phi_d$, x_n è la distanza del *n*-esimo elemento dal centro dell'array e (θ_d, ϕ_d) rappresentano le coordinate polari che definiscono la direzione di arrivo (DOA) del segnale desiderato caratterizzato dall'inviluppo $p_d(t)$. Considerando la possibilità che uno o più (N_I) segnali interferenti vengano ricevuti dall'antenna alla stessa frequenza angolare del segnale desiderato ω_d , si può valutare il contributo di ciascuna interferente all'*n*-esimo elemento come

$$S_{n}^{i}(t) = p_{i}(t)e^{j\beta_{n}^{i}} \quad \left\{ \begin{array}{c} n = 1, ..., N\\ i = 1, ..., I \end{array} \right.$$
(2)

dove $\beta_n^i = (2\pi/\lambda)(u_i x_n)$, $u_i = \sin \theta_i \cos \phi_i e \theta_i$, ϕ_i rappresentano le coordinate polari che definiscono la direzione di arrivo (DOA) dell'i-esimo segnale interferente caratterizzato dall'inviluppo $p_i(t)$. Si considera inoltre nel sistema un contributo del rumore modellato con un processo additivo Gaussiano caratterizzato da potenza \wp_n . Sotto queste ipotesi, la matrice di convarianza di dimensioni $N \times N$ relativa al segnale desiderato si può scrivere come

$$\Phi_d = E\left\{\sum_{m=1}^N \sum_{n=1}^N S_m^{d*}(t) S_n^d(t)\right\}$$
(3)

In modo analogo è possibile esprimere la matrice di covarianza associata all'i-esima interferente come

$$\Phi_i = E\left\{\sum_{m=1}^N \sum_{n=1}^N S_m^{i*}(t) S_n^i(t)\right\} \quad i = 1, ..., I$$
(4)

mentre la matrice di covarianza del rumore è data da

$$\Phi_n = p_n 1^N \tag{5}$$

dove 1^N rappresenta una matrice identità di dimensioni $N \times N$.

Possiamo esprimere la matrice di covarianza del segnale indesiderato ricevuto nella forma

$$\Phi_u = \sum_{i=1}^{I} \Phi_i + \Phi_n \tag{6}$$

ed il suo contributo di potenza, utilizzando la time modulation, risulta essere

$$\wp_u = \frac{1}{2} \underline{G}^{T*} \Phi_u \underline{G} \tag{7}$$

dove il vettore \underline{G} è dato da

$$\underline{G} = \left\{ \omega_n \tau_n e^{j\gamma_n}, \quad n = 1, \dots, N \right\}$$
(8)

dove ω_n è il coefficiente di ampiezza d'eccitazione associato al *n*-esimo elemento, τ_n è la durata dell'impulso di accensione associata al *n*-esimo elemento e γ_n è la fase associata all'elemento *n*-esimo dell'array.

Di conseguenza il contributo di potenza del segnale desiderato al ricevitore è

$$\wp_d = \frac{1}{2} p_d^2(t) \left| \underline{G}^T \underline{U}(\theta_d, \phi_d) \right|^2 \tag{9}$$

dove

$$\underline{U}(\theta_d, \phi_d) = \left\{ e^{j\beta_n^d}, \ n = 1, ..., N \right\}$$
(10)

Quindi da (6) e (9) il SINR (Signal to Interferience plus Noise Ratio) si definisce come:

$$\Psi(\underline{G}) \triangleq \frac{\wp_d}{\wp_u} = \frac{p_d^2(t) \left|\underline{G}^T \underline{U}(\theta_d, \phi_d)\right|^2}{\underline{G}^{T*} \Phi_u \underline{G}^T}$$
(11)

Dato che Φ_u e $p_d^2(t)$ non sono direttamente misurabili la (11) non è utilizzabile. E' possibile però riformulare il problema di massimizzazione del SINR con la seguente funzione di costo

$$f(\underline{G}) = \frac{\left|\underline{G}^T \underline{U}(\theta_d, \phi_d)\right|^2}{\underline{G}^{T*} \Phi_t \underline{G}^T}$$
(12)

 $\mathrm{dove}\Phi_t = \Phi_d + \sum_{i=1}^I \Phi_i + \Phi_n$ è una quantità misurabile al ricevitore.

Modello SINR e Sideband Radiation Minimization

Nel caso specifico si considera una funzione di costo composta da due termini, uno relativo alla funzione di costo definita in (12) (termine direttamente legato al SINR) e l'altro relativo alla Sideband Radiation (Appendice):

$$f_{SR}(\underline{G}) = f(\underline{G}) + \frac{P_{SR}}{P_{tot}}$$
(13)

Risultati Numerici

TEST CASE - Time-Varying Scenario

Goal

Valutare le prestazioni della tecnica di nulling adattivo mediante time-modulated linear array (TMLA) in uno scenario tempo variante.

Test Case Description

- Number of Elements: N = 20
- Elements Spacing: $d = 0.5\lambda$
- Static Array Configuration: Uniform Excitations
- Max Gain Pattern Direction : $\theta^d=90^\circ,\,\phi^d=90^\circ$
- Desired Signal Power: $0 \, dB$
- Interference Power: $30 \, dB$
- Noise Power: $-30 \, dB$
- Number of Interferences: $N_I \in [1-6]$
- Desired Signal Direction Of Arrival: $\theta^d = 90^\circ, \ \phi^d = 90^\circ$
- Interferences Directions Of Arrival: $\theta^i=90^\circ, \phi^i\in [0^\circ-180^\circ]$

Optimization Approach: PSO

- Number of Variables: $X = 20 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = 20
- Number of Iterations: I = 200
- Inertial Weight: Linearly varying: 0.9 to 0.4

Time Varying Scenario - Poisson Distribution

Time Varying Scenario - Adaptive Nulling in TMLA with PSO - Behavior of SINR and Sideband Radiation

Note

Fig.3 e Fig.4 riportano rispettivamente l'andamento del signal-to-interferences-plus-noise ratio (SINR) e della sideband radiation (SR), i cui valori sono mediati sulle precedenti 50 iterazioni. Le due tecniche di ottimizzazione confrontate si basano su due differenti funzioni di costo: (12) e (13).

Fig.5 - Time-Varying SINR & Optimization Processes

Fig.6 - Time-Varying SINR & Optimization Processes

Fig.7 - Pulse Sequence

Fig.9 - Beam Patterns - q=0,1,2

Timestep 54

Fig.10 - Pulse Sequence

Fig.11 - Beam Pattern - q=0

Fig.12 - Beam Patterns - q=0,1,2

Fig.13 - Pulse Sequence

Fig.14 - Beam Pattern - q=0

Fig.15 - Beam Patterns - q=0,1,2

Timestep 88

Fig.16 - Pulse Sequence

Fig.17 - Beam Pattern - q=0

Fig.18 - Beam Patterns - q=0,1,2

	$SINR\left[dB ight]$	SR[%]	$SBL\left[dB ight]$	$SLL\left[dB ight]$	$BW\left[deg\right]$	N_I
Timestep 53	39.67	1.23	-36.88	-9.78	5.20	1
Timestep 54	40.29	1.70	-34.68	-13.40	5.06	1
Timestep 55	38.92	1.76	-34.06	-12.58	5.14	1
$Timestep \; 56$	41.94	1.72	-34.03	-12.48	5.39	1
Timestep 86	18.08	3.65	-27.11	-6.81	12.25	2
Timestep 87	11.00	3.25	-27.86	-13.55	5.04	3
Timestep 88	5.67	2.63	-30.02	-13.54	5.25	4
Timestep 89	24.15	3.08	-28.37	-15.03	4.56	2

Tab.1 - SINR maximization approach - analysis of the results proposed in Fig.5-6: signal-to-interferences-plus-noise ratio (SINR [dB]), sideband radiation (SR [%]), sidelobe level (SLL [dB]), sideband level (SBL [dB]), -3 dB beamwidth expressed in degrees (BW [deg]) and number of interferences (N_I).

	$SINR\left[dB ight]$	SR[%]	$SBL\left[dB ight]$	$SLL\left[dB ight]$	$BW\left[deg\right]$	N_I
Timestep 53	32.10	1.49	-34.97	-13.49	5.14	1
Timestep 54	29.85	1.06	-37.94	-12.30	4.92	1
Timestep 55	31.55	1.63	-33.89	-9.83	4.78	1
Timestep 56	33.72	1.26	-36.84	-13.91	5.09	1
Timestep 86	-2.72	2.31	-30.93	-14.37	5.39	2
Timestep 87	9.08	3.19	-28.86	-14.33	5.10	3
Timestep 88	2.06	1.64	-34.12	-10.85	4.88	4
Timestep 89	7.81	2.27	-31.18	-13.05	5.03	2

Tab.2 - SINR maximization and SR minimization approach - analysis of the results proposed in Fig.5-6: signal-to-interferences-plus-noise ratio (SINR [dB]), sideband radiation (SR [%]), sideband level (SBL [dB]), sidelobe level (SLL [dB]), -3 dB beamwidth expressed in degrees (BW [deg]) and number of interferences (N_I).

Time-Varying Scenario - Adaptive Nulling in TMLA with PSO - Statistical Analysis

	$av\left\{SINR ight\}$	$var\left\{ SINR ight\}$	$min\left\{SINR ight\}$	$max\left\{ SINR ight\}$
SINRmaxapproach	7316.60	74105608	6.19×10^{-4}	20000
SINR max and SR min approach	5890.76	66954948	5.56×10^{-4}	20000

Tab.3 - SINR Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of the signal-to-interferences-plus-noise ratio expressed in linear values (SINR)

	$av\left\{ SINR\left[dB ight] ight\}$	$var\left\{ SINR\left[dB ight] ight\}$	$\min\left\{ SINR\left[dB\right] \right\}$	$max\left\{ SINR\left[dB\right] \right\}$
SINR max approach	23.74	428.37	-32.09	43.01
SINR max and SR min approach	20.20	491.24	-32.55	43.01

Tab.4 - SINR Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of the signal-to-interferences-plus-noise ratio expressed in dB (SINR[dB])

	$av\left\{ SLL ight\}$	$var\left\{ SLL ight\}$	$min\left\{ SLL ight\}$	$max\left\{ SLL ight\}$
SINRmaxapproach	0.2856	2.34×10^{-2}	0.1368	0.9847
SINRmaxandSRminapproach	0.2355	2.34×10^{-3}	0.1476	0.4819

Tab.5 - SLL Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of the sidelobe level expressed in linear values (*SLL*)

	$av\left\{ SLL\left[dB ight] ight\}$	$var\left\{ SLL\left[dB ight] ight\}$	$\min\left\{ SLL\left[dB\right] \right\}$	$max\left\{ SLL\left[dB\right] \right\}$
SINRmaxapproach	-11.63	10.20	-17.28	-0.13
SINRmaxandSRminapproach	-12.72	2.68	-16.62	-6.34

Tab.6 - SLL Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of the sidelobe level expressed in dB (SLL [dB])

	$av\left\{SBL ight\}$	$var\left\{ SBL ight\}$	$min\left\{SBL ight\}$	$max\left\{SBL\right\}$
SINR max approach	3.08×10^{-2}	9.93×10^{-4}	0.00	0.3125
SINRmaxandSRminapproach	1.61×10^{-2}	$3.05 imes 10^{-4}$	0.00	0.0767

Tab.7 - SBL Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of thesideband level expressed in linear values (SBL)

	$av\left\{ SBL\left[dB ight] ight\}$	$var\left\{ SBL\left[dB\right] \right\}$	$\min\left\{ SBL\left[dB\right] \right\}$	$max\left\{ SBL\left[dB\right] \right\}$
SINR max approach	_	_	$-\infty$	-10.10
SINRmaxandSRminapproach	—	_	$-\infty$	-22.30

Tab.8 - SBL Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of thesideband level expressed in dB (SBL[dB])

	$av\left\{ BW\left[deg\right] \right\}$	$var\left\{ BW\left[deg\right] \right\}$	$\min\left\{BW\left[deg\right]\right\}$	$max\left\{ BW\left[deg\right] \right\}$
SINRmaxapproach	5.54	3.82	3.78	36.54
SINRmaxandSRminapproach	5.14	5.30×10^{-2}	4.41	6.52

Tab.9 - BW Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of the -3dB beamwidth expressed in degrees (BW [deg])

	$av\left\{ SR ight\}$	$var\left\{ SR ight\}$	$min\left\{ SR ight\}$	$max\left\{ SR ight\}$
SINRmaxapproach	2.69	8.82	0.00	32.44
SINRmaxandSRminapproach	1.33	2.09	0.00	8.02

Tab.10 - SR Statistics: average $av \{\cdot\}$, variance $var \{\cdot\}$, minimum $min \{\cdot\}$ and maximum $max \{\cdot\}$ of thesideband radiation expressed in percentage [%] on the total power (SR)

Fig.19 - Intermediate Solutions - Pulse Sequences

Appendice

La potenza totale da un array di elementi con eccitazioni sottoposte a Time Modulation è calcolabile come:

$$P_{tot} = \sum_{n=0}^{N-1} \left\{ |\alpha_n|^2 \sum_{h=-\infty}^{\infty} u_{hn}^2 \right\} + 2 \sum_{m,n \in \Omega_{mn}} \left\{ \operatorname{Re} \left\{ \alpha_m \alpha_n^* \right\} \operatorname{sinc} \left[kd(m-n) \right] \sum_{h=-\infty}^{\infty} u_{hn} u_{hm} \right\}$$
(14)

che si può tradurre anche in una sommatoria di infiniti termini rappresentanti la potenza associata alle varie frequenze, centrale ed armoniche:

$$P_{tot} = \sum_{h=-\infty}^{\infty} P_h \tag{15}$$

La Sideband Radiation rappresenta la quantità di potenza radiata dall'array alle frequenze spurie: sarà in seguito espressa in percentuale rispetto alla potenza totale radiata.

E' possibile ricavare la potenza associata alle frequenze spurie grazie alla seguente equazione:

$$P_{SR} = \sum_{n=1}^{N} \left\{ \left| \alpha_n \right|^2 \tau_n (1 - \tau_n) \right\} + \sum_{m,n \in \Upsilon_{mn}} \left\{ \operatorname{Re} \left\{ \alpha_m \alpha_n^* \right\} \operatorname{sinc} \left[k(z_m - z_n) \right] \left(\tau_{\{m,n\}_{MinVal}} - \tau_m \tau_n \right) \right\}$$
(16)

dove

$$\tau_{\{m,n\}_{MinVal}} = \begin{cases} \tau_n & \text{if } \tau_n \le \tau_m \\ \tau_m & \text{altrimenti} \end{cases}$$
(17)

References

- [1] S. B. Applebaum, "Adaptive Arrays," IEEE Trans. Antennas Propag., vol.24, no. 5, pp. 585-598, Sep. 1976.
- [2] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through timemodulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 101-104, 2012.
- [3] M. Benedetti, G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: ideal model and experimental validation in complex interference scenarios," Progress in Electromagnetic Research, PIER 96, pp. 173-191, 2009.
- [4] M. Benedetti, R. Azaro, and A. Massa, "Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios," IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 1939-1947, Jul. 2008.
- [5] M. Benedetti, R. Azaro, and A. Massa, "Experimental validation of a fully-adaptive smart antenna prototype," Electronics Letters, vol. 44, no. 11, pp. 661-662, May 2008.
- [6] R. Azaro, L. Ioriatti, M. Martinelli, M. Benedetti, and A. Massa, "An experimental realization of a fullyadaptive smart antenna," Microwave Opt. Technol. Lett., vol. 50, no. 6, pp. 1715-1716, Jun. 2008.
- [7] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 623-626, 2007.
- [8] M. Benedetti, R. Azaro, D. Franceschini, and A. Massa, "PSO-based real-time control of planar uniform circular arrays," IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 545-548, 2006.
- [9] F. Viani, L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 993-1003, 2010.
- [10] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 10, pp. 5068-5077, October 2013.
- [11] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009.
- [12] P. Rocca, L. Manica, L. Poli, and A. Massa, "Synthesis of compromise sum-difference arrays through time-modulation," IET Radar, Sonar & Navigation, vol. 3, no. 6, pp. 630-637, 2009.
- [13] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, Mar. 2014.
- [14] P. Rocca, Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4D arrays as enabling technology for cognitive radio systems," IEEE Transactions on Antennas and Propagation - Special Issue on "Antenna Systems and Propagation for Cognitive Radio," vol. 62, no. 3, pp. 1102-1116, Mar. 2014.