A failure correction strategy in time-modulated linear arrays

L. Poli, P. Rocca, G. Oliveri, A. Massa

Abstract

A technique for failure correction in time-modulated linear arrays is analyzed in this report. Starting from the knowledge of the array elements with failures, the on-off behavior of the switches at the other elements is properly reconfigured to radiate a pattern as close as possible to the ideal one in terms of pattern features. The array reconfiguration is carried out by solving an optimization problem through the minimization of a suitable cost function proportional to the mismatch between ideal and reconfigured pattern features.

Numerical Results

TEST CASE 1.a - N = 16, Single Failure (External Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Description

- Number of Elements N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 7.95 \, deg$
- Failure occured at the element n = 2

- Number of Variables: $X = 16 (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 1 - Pulse Sequence - Original

Fig. 3 - Pulse Sequence - Compromised

Fig. 5 - Pulse Sequence - PSO-reconfigured

Fig. 7 - SBL - Comparison

Fig. 2 - Patterns - Original

Fig. 4 - Patterns - Compromised

Fig. 6 - Patterns - PSO-reconfigured

Fig. 9 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg ight]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	7.95	8.36	-12.39	24.17
Compromised	-23.85	8.25	8.37	-12.84	22.79
PSO-reconfigured	-25.78	8.08	8.61	-12.71	22.21

 Tab. I - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), Sideband

 Level (SBL) and Sideband Radiation (SR)

TEST CASE 1.b - N = 16, Single Failure (External Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: BW weight: $w_{BW} = 1$
- Current: BW weight: $w_{BW} = 0$ (SLL-only required matching)

Description

- Number of Elements N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 7.95 \, deg$
- Failure occured at the element n = 2

- Number of Variables: $X = 16 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 0$, SR weight: $w_{SR} = 1$

Fig. 10 - Pulse Sequence - Original

Fig. 12 - Pulse Sequence - Compromised

Fig. 14 - Pulse Sequence - PSO-reconfigured

Fig. 16 - SBL - Comparison

Fig. 11 - Patterns - Original

Fig. 13 - Patterns - Compromised

Fig. 15 - Patterns - PSO-reconfigured

Fig. 18 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	7.95	8.36	-12.39	24.17
Compromised	-23.85	8.25	8.37	-12.84	22.79
PSO-reconfigured	-29.96	9.16	7.96	-13.79	21.20

Tab. II - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 1.c - N = 16, Single Failure (Internal Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the element n = 2
- Current: Failure occured at the element n = 8

Description

- Number of Elements N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 7.95 \, deg$
- Failure occured at the element n = 8

- Number of Variables: $X = 16 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 19 - Pulse Sequence - Original

Fig. 21 - Pulse Sequence - Compromised

Fig. 23 - Pulse Sequence - PSO-reconfigured

Fig. 20 - Patterns - Original

Fig. 22 - Patterns - Compromised

Fig. 24 - Patterns - PSO-reconfigured

	$SLL\left[dB ight]$	$BW\left[deg ight]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	7.95	8.36	-12.39	24.17
Compromised	-15.68	7.80	7.77	-11.94	25.28
PSO-reconfigured	-17.93	7.65	7.15	-10.33	30.35

Tab. III - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 1.d - N = 16, Double Failure (External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the element n = 8
- Current: Failures occured at the elements n = 2, 14

Description

- Number of Elements N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 7.95 \, deg$
- Failures occured at the elements n = 2, 14

- Number of Variables: $X = 16 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 25 - Pulse Sequence - Original

Fig. 27 - Pulse Sequence - Compromised

Fig. 29 - Pulse Sequence - PSO-reconfigured

Fig. 31 - Pulse Sequence - PSO-reconfigured

Fig. 26 - Patterns - Original

Fig. 28 - Patterns - Compromised

Fig. 30 - Patterns - PSO-reconfigured

Fig. 32 - Patterns - PSO-reconfigured

Fig. 33 - Pattern Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	7.95	8.36	-12.39	24.17
Compromised	-19.88	8.55	8.27	-13.68	21.30
PSO-reconfigured	-22.95	9.25	7.91	-14.85	19.00

Tab. IV - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 1.e - N = 16, Double Failure (External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: BW weight: $w_{BW} = 1$
- Current: BW weight: $w_{BW} = 0$ (SLL-only required matching)

Description

- Number of Elements N = 16
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 7.95 \, deg$
- Failures occured at the element n = 2, 14

- Number of Variables: $X = 16 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 0$, SR weight: $w_{SR} = 1$

Fig. 34 - Pulse Sequence - Original

Fig. 36 - Pulse Sequence - Compromised

Fig. 38 - Pulse Sequence - PSO-reconfigured

Fig. 40 - Pulse Sequence - PSO-reconfigured

Fig. 35 - Patterns - Original

Fig. 37 - Patterns - Compromised

Fig. 39 - Patterns - PSO-reconfigured

Fig. 41 - Patterns - PSO-reconfigured

Fig. 42 - Pattern Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	7.95	8.36	-12.39	24.17
Compromised	-19.88	8.55	8.27	-13.68	21.30
PSO-reconfigured	-29.90	11.39	5.59	-12.66	25.50

Tab. V - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 2.a - N = 32, Single Failure (External Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Number of Elements N = 16; Failures occured at the elements n = 2, 14
- Current: Number of Elements N = 32; Failure occured at the element n = 29

Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 3.88 \, deg$
- Failure occured at the element n = 29

- Number of Variables: $X = 32 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 43 - Pulse Sequence - Original

Fig. 45 - Pulse Sequence - Compromised

Fig. 47 - Pulse Sequence - PSO-reconfigured

Fig. 49 - SBL - Comparison

Fig. 44 - Patterns - Original

Fig. 46 - Patterns - Compromised

Fig. 48 - Patterns - PSO-reconfigured

Fig. 51 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg ight]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	3.88	11.53	-12.29	23.95
Compromised	-24.24	4.02	11.53	-12.77	22.58
PSO-reconfigured	-29.97	4.13	11.50	-13.54	20.59

Tab. VI - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 2.b - N = 32, Single Failure (Internal Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the element n = 29
- Current: Failure occured at the element n = 18

Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 3.88 \, deg$
- Failure occured at the element n = 18

- Number of Variables: $X = 32 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 52 - Pulse Sequence - Original

Fig. 54 - Pulse Sequence - Compromised

Fig. 56 - Pulse Sequence - PSO-reconfigured

Fig. 58 - SBL - Comparison

Fig. 53 - Patterns - Original

Fig. 55 - Patterns - Compromised

Fig. 57 - Patterns - PSO-reconfigured

Fig. 60 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	3.88	11.53	-12.29	23.95
Compromised	-19.34	3.91	11.26	-12.35	23.66
PSO-reconfigured	-23.87	4.02	10.44	-11.68	27.00

 Tab. VII - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), Sideband

 Level (SBL) and Sideband Radiation (SR)

TEST CASE 2.c - N = 32, Double Failure (External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the element n = 18
- Current: Failures occured at the elements n = 2, 29

Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1$, n = 1, N
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 3.88 \, deg$
- Failures occured at the elements n = 2, 29

- Number of Variables: $X = 32 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 61 - Pulse Sequence - Original

Fig. 63 - Pulse Sequence - Compromised

Fig. 65 - Pulse Sequence - PSO-reconfigured

Fig. 67 - SBL - Comparison

Fig. 62 - Patterns - Original

Fig. 64 - Patterns - Compromised

Fig. 66 - Patterns - PSO-reconfigured

Fig. 69 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	3.88	11.53	-12.29	23.95
Compromised	-24.12	4.01	11.56	-12.69	22.64
PSO-reconfigured	-29.84	4.21	11.36	-13.78	21.23

 Tab. VIII - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), Sideband

 Level (SBL) and Sideband Radiation (SR)

TEST CASE 2.d - N = 32, Double Failure (Internal/External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the elements n = 2, 29
- Current: Failures occured at the elements n = 2, 18

Description

- Number of Elements N = 32
- Elements Spacing: $d = 0.5\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Dolph-Chebyshev, $SLL = -30 \, dB$, $BW = 3.88 \, deg$
- Failures occured at the elements n = 2, 18

- Number of Variables: $X = 32 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 70 - Pulse Sequence - Original

Fig. 72 - Pulse Sequence - Compromised

Fig. 74 - Pulse Sequence - PSO-reconfigured

Fig. 76 - SBL - Comparison

Fig. 71 - Patterns - Original

Fig. 73 - Patterns - Compromised

Fig. 75 - Patterns - PSO-reconfigured

Fig. 78 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-29.86	3.88	11.53	-12.29	23.95
Compromised	-20.97	3.84	11.26	-11.99	24.44
PSO-reconfigured	-22.43	3.95	11.29	-12.85	21.90

Tab. IX - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 3.a - N = 30, Single Failure (External Pulse)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Number of Elements N = 32; Failures occured at the element n = 2, 29
- Current: Number of Elements N = 30; Failure occured at the elements n = 28

Description

- Number of Elements N = 30
- Elements Spacing: $d = 0.7\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Optimized to synthesize a pattern with $SLL = -20 \, dB$ with minimum SR
- Failure occured at the element n = 28

- Number of Variables: $X = 30 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 79 - Pulse Sequence - Original

Fig. 81 - Pulse Sequence - Compromised

Fig. 83 - Pulse Sequence - PSO-reconfigured

Fig. 85 - SBL - Comparison

Fig. 80 - Patterns - Original

Fig. 82 - Patterns - Compromised

Fig. 84 - Patterns - PSO-reconfigured

Fig. 87 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-19.88	2.84	13.91	-28.91	3.57
Compromised	-17.26	2.99	13.77	-28.54	3.81
PSO-reconfigured	-19.97	2.78	14.25	28.97	3.68

Tab. X - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 3.b - N = 30, Double Failure (External/Semi-External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failure occured at the element n = 28
- Current: Failures occured at the elements n = 7, 28

Description

- Number of Elements N = 30
- Elements Spacing: $d = 0.7\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Optimized to synthesize a pattern with $SLL = -20 \, dB$ with minimum SR
- Failures occured at the elements n = 7, 28

- Number of Variables: $X = 30 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 88 - Pulse Sequence - Original

Fig. 90 - Pulse Sequence - Compromised

Fig. 92 - Pulse Sequence - PSO-reconfigured

Fig. 94 - SBL - Comparison

Fig. 89 - Patterns - Original

Fig. 91 - Patterns - Compromised

Fig. 93 - Patterns - PSO-reconfigured

Fig. 96 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg ight]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-19.88	2.84	13.91	-28.91	3.57
Compromised	-15.70	3.01	13.43	-28.16	3.89
PSO-reconfigured	-19.96	2.84	14.15	-26.40	4.45

Tab. XI - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 3.c - N = 30, Triple Failure (External/External/Semi-External Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failures occured at the elements n = 7, 28
- Current: Failures occured at the elements n = 2, 7, 28

Description

- Number of Elements N = 30
- Elements Spacing: $d = 0.7\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Optimized to synthesize a pattern with $SLL = -20 \, dB$ with minimum SR
- Failures occured at the element n = 2, 7, 28

- Number of Variables: $X = 30 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 97 - Pulse Sequence - Original

Fig. 99 - Pulse Sequence - Compromised

Fig. 101 - Pulse Sequence - PSO-reconfigured

Fig. 103 - SBL - Comparison

Fig. 98 - Patterns - Original

Fig. 100 - Patterns - Compromised

Fig. 102 - Patterns - PSO-reconfigured

Fig. 105 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-19.88	2.84	13.91	-28.91	3.57
Compromised	-16.82	3.16	13.27	-30.11	3.24
PSO-reconfigured	-19.95	2.88	14.20	-26.70	4.58

Tab. XII - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), SidebandLevel (SBL) and Sideband Radiation (SR)

TEST CASE 3.d - N = 30, Triple Failure (External/Semi-External/Internal Pulses)

Goal

Reconfigure the radiated pattern through a PSO-based optimization strategy according to the feature of the pattern before the failure occured to the RF switches.

Differences wrt previous test case

- Previous: Failures occured at the elements n = 2, 7, 28
- Current: Failures occured at the elements n = 7, 20, 28

Description

- Number of Elements N = 30
- Elements Spacing: $d = 0.7\lambda$
- Static Array Excitations: Uniform, $I_n = 1, n = 1, N$
- Averaged Time-Modulated Array Excitations: Optimized to synthesize a pattern with $SLL = -20 \, dB$
- Failures occured at the element n = 7, 20, 28

- Number of Variables: $X = 30 \ (\tau_n, n = 1, ..., N)$
- Number of Particles: S = N
- Number of Iterations: M = 1000
- Inertial Weight: $I_w = 0.4$
- Cost Function: SLL weight: $w_{SLL} = 100$, BW weight: $w_{BW} = 1$, SR weight: $w_{SR} = 1$

Fig. 106 - Pulse Sequence - Original

Fig. 108 - Pulse Sequence - Compromised

Fig. 110 - Pulse Sequence - PSO-reconfigured

Fig. 112 - SBL - Comparison

Fig. 107 - Patterns - Original

Fig. 109 - Patterns - Compromised

Fig. 111 - Patterns - PSO-reconfigured

Fig. 114 - SBL - Comparison

	$SLL\left[dB ight]$	$BW\left[deg\right]$	$D\left[dB ight]$	$SBL\left[dB ight]$	SR[%]
Original	-19.88	2.84	13.91	-28.91	3.57
Compromised	-14.74	2.98	13.07	-27.75	3.97
PSO-reconfigured	-19.92	2.91	13.35	-17.51	14.23

 Tab. XIII - Patterns features: Sidelobe Level (SLL), -3dB Beamwidth (BW), Directivity (D), Sideband

 Level (SBL) and Sideband Radiation (SR)

References

- L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," *IEEE Trans. Antennas Propag.*, vol. 58, no. 4, pp. 1408-1411, Apr. 2010.
- [2] E. T. Bekele, L. Poli, M. D'Urso, P. Rocca, and A. Massa, "Pulse-shaping strategy for time modulated arrays - Analysis and design," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3525-3537, July 2013.
- [3] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3246-3254, Sep. 2011.
- [4] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Harmonic beamforming in time-modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2538-2545, Jul. 2011.
- [5] P. Rocca, L. Poli, and A. Massa, "Instantaneous directivity optimization in time-modulated array receivers," IET Microwaves, Antennas & Propagation, vol. 6, no. 14, pp. 1590-1597, Nov. 2012.
- [6] L. Poli, P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microwaves, Antennas & Propagation, vol. 6, no. 2, pp. 214-222, 2012.
- [7] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 157-166, 2011.
- [8] L. Poli, P. Rocca, L. Manica, and A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1157-1164, 2010.
- [9] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 827-838, 2010.
- [10] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009.
- [11] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, Mar. 2014.
- [12] P. Rocca, Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4D arrays as enabling technology for cognitive radio systems," IEEE Transactions on Antennas and Propagation - Special Issue on "Antenna Systems and Propagation for Cognitive Radio," vol. 62, no. 3, pp. 1102-1116, Mar. 2014.