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Synthesis of Monopulse Sub-arrayed Linear and Planar Array

Antennas with Optimized Sidelobes

G. Oliveri and L. Poli

Abstract

In this paper, three approaches for the synthesis of the optimal compromise between sum

and difference patterns for sub-arrayed linear and planar arrays are presented. The synthesis

problem is formulated as the definition of the sub-array configuration and the correspond-

ing sub-array weights to minimize the maximum level of the sidelobes of the compromise

difference pattern. In the first approach, the definition of the unknowns is carried out simul-

taneously according to a global optimization schema. Differently, the other two approaches

are based on a hybrid optimization procedures, exploiting the convexity of the problem

with respect to the sub-array weights. In the numerical validation, representative results are

shown to assess the effectiveness of the proposed approaches. Comparisons with previously

published results are reported and discussed, as well.

Key words: Linear and Planar Arrays, Monopulse Antennas, Sum and Difference Patterns,

Hybrid Optimization.
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1 Introduction

Monopulse tracking radars [1] are based on the simultaneouscomparison ofsumanddifference

signals to compute the angle-error and to steer the antenna patterns in the direction of the tar-

get (i.e., the boresight direction). Besides classical solutions where multi-feeder reflectors are

considered, the two (sum and difference) or three (sum and double-difference) patterns, needed

to determine the angular location of the target along a singular angular coordinate or both in

azimuth and elevation, can be synthesized through linear orplanar array antennas, respectively.

Recent studies are mainly devoted to array solutions because of the larger number of degrees

of freedom. As a matter of fact, such a solution allows one to control the illumination of the

array directly on the aperture by modifying the excitationsof the radiating elements. Moreover,

the synthesized patterns are electronically steerable. This enables the fast change of the beam

direction and it avoids the inertia problems due to the use ofmechanical positioning systems.

On the contrary, the drawbacks of the array implementation lay in the circuit complexity and

the arising costs. Nevertheless, the elements of the aperture can be grouped into sub-arrays in

order to simplify the antenna design and obtain cheaper tradeoff despite some reductions of the

antenna performances [2][3].

In antenna systems applied for real world applications [4],different strategies for implementing

monopulse radars have been adopted. A well known technique considers the partition of the

array aperture into two halves (linear array) o four quadrants (planar arrays). The outputs of the

elements belonging to the same half/quadrant are combined and continuously compared with

the output/s of the other half/quadrants to determine the error signal. Such a signal is used to

steer the sum and difference beams and thus to track the moving target.

In such a framework, recent papers have dealt with the optimal compromise problem between

sum and difference patterns, starting from an optimum sum pattern generated by a complete

and dedicated feed network. The elements of the array are then grouped into sub-arrays with a

proper weighting to obtain a “sub-optimal” difference pattern. Either the optimization of some

specific pattern features (e.g., the directivity [5][6][7], the normalized difference slope [8], the

sidelobe level (SLL) [9][10]) or the fitting with an optimal pattern in the Dolph-Chebyshev

sense [11][12] have been considered. Among them, theSLL minimization of the compromise

difference pattern has received particular attention. To deal with such a synthesis problem,
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different optimization strategies based on global optimization approaches [13][14] as well as

two-step hybrid techniques [9][10][11][15] have been proposed. However, an effective and

flexible procedure able to deal with both the synthesis of linear and planar structures has been

previously proposed only in [9][12][16]. Such an event is mainly due to the exponential growth

of the dimension of the solution space with the increase of the number of array elements.

The approach proposed in [12] and then extended in [16], named Contiguous Partition Method

(CPM), takes advantage from the knowledge of the relationship between the independent dis-

tributions of the optimal sum and difference [17] coefficients to reduce the dimension of the

solution space. Accordingly, the synthesis of large planararrays is enabled and the converge

of the synthesis procedure speeded up. Essentially based onan excitation matching proce-

dure, the sub-array configuration is first obtained by minimizing the distance between the refer-

ence/optimal and synthesized (sub-arrayed) difference coefficients. Accordingly, the sub-array

gains are directly computed as a function of the optimal sum and difference excitations exploit-

ing the guidelines of [20]. Nevertheless, theCPM procedure does not allow to control the

level of the sidelobes. To overcome this drawback, preliminary results obtained by means of

an iterative version of theCPM (the I − CPM) have been shown in [18] and [19]. There,

the optimal pattern to match is iteratively changed until the SLL of the compromise solution

satisfied the user-defined constraints.

In this paper, three new approaches aimed at the minimization of theSLL of the compromise

difference pattern are presented. In the first, the simultaneous optimization of the problem un-

knowns is dealt with likewise [12], but in this case the so-called solution tree(i.e., the represen-

tation of all the admissible sub-array configuration [12]) is explored looking the solution with

minimumSLL. This strategy will be referred in the following as ModifiedCPM (M−CPM).

The other two approaches consider the hybridization of theI − CPM (HI − CPM) and of

theM − CPM (HM − CPM) with a Convex Programming (CP ) procedure [10] to directly

introduceSLL constraints in the optimization procedure.

The paper is organized as follows. In Sect. 2, the synthesis problem is mathematically formu-

lated. The innovativeCPM-based procedure aimed at the optimization of theSLL is pointed

out in Sect. 3, where the one-step (Sect. 3.1) as well as the hybrid two-step (Sect. 3.2) are

presented. A set of selected results concerning the synthesis of linear as well as planar arrays
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is reported in Sect. 4 to assess the effectiveness of the proposed methods. Comparison with

previously published results are also reported where available. Finally, some conclusions are

drawn (Sect. 5).

2 Mathematical Formulation

Let us consider either a linear or planar array with elementsuniformly spaced in thexy-plane

(Fig. 1). The array factor is

f (u, v) =
N

∑

n=1

cne
jk(uxn+vyn) (1)

wherecn, n = 1, ..., N , is the set of real excitations,u = sin θ cos φ andv = sin θ sin φ, where

the values(θ, φ), θ ∈
[

0, π
2

]

andφ ∈ [0, 2π] , indicate the angular direction, andk = 2π
λ

is the

wavenumber of the background medium. Moreover,(xn, yn) is the position of then-th array

element.

To obtain sum and difference patterns, the distribution of the coefficients is supposed to be

symmetric with respect to the physic center of the aperture.In particular and concerning the

linear case, the two halves of the array are summed in phase and phase reversal, respectively.

Differently, the aperture is supposed to be divided into four symmetric quadrants in the case of

a planar array. Accordingly, the sum signal is obtained by adding in phase all the output of the

four quadrants, while the difference modes, namely theazimuth difference mode(H − mode)

and theelevation difference mode(E −mode), are given with pair of quadrants added in phase

reversal.

The excitations of the “sub-optimal” difference patterncn = dn, n = 1, ..., N , as obtained

through the sub-arrayed feed network are

dn =















∑Q
q=1 snδanqwq −π/2 < φ ≤ π/2

∑Q
q=1 (−1) snδanqwq π/2 < φ ≤ 3π/2

(2)

whereS = {sn; n = 1, ..., N} is a set of fixed excitations affording an optimal sum pattern

[17], W = {wq; q = 1, ..., Q} are the (unknown) sub-array weights,A = {an; n = 1, ..., N}

is a integer vector where the elementan ∈ [0, Q] indicating the sub-array membership (when

an = 0 it follows thatdn = sn) andδanq is the Kronecker delta (δanq = 1 if an = q andδanq = 0

otherwise). Since monopulse planar arrays require the generation of two spatially-orthogonal
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difference patterns [4], the coefficients of the first difference mode are given as in (2), while the

second difference mode is obtained by adding the two pairs ofquadrants shifted byπ/2 in the

φ-direction with respect to (2).

Hence, the problem at hand is formulated as follows : “optimizing the sub-array configuration

Aopt and the corresponding set of weightsW opt to obtain a compromise difference pattern with

minimum sidelobe level for a given main lobes beamwidth.”

3 Sidelobe Level Optimization Approaches

In this section, three new approaches for the solution of theoptimal compromise between sum

and difference patterns are described, where theSLL optimization of the difference beams is

dealt with. In particular, the simultaneous optimization of both the sub-array aggregation and

the sub-array gains is firstly considered according to theM − CPM (Sect. 3.1) and the main

differences with respect to theI − CPM [18] are pointed out. Then, their hybridized two-step

versions, namely theHI − CPM and theHM − CPM are presented in Sect. 3.2, as well.

3.1 Simultaneous Definition of the Unknowns

As far as the simultaneous synthesis of the problem unknownsis concerned, theIterative Con-

tiguous Partition Method(I − CPM) has been successfully applied. Its procedure and some

preliminary results have been already published in [18] and[19], where linear and planar array

synthesis problems have been dealt with, respectively. In particular, theI − CPM is based on

the following concept: by successively changing the reference/optimal target to approximate,

at each step theCPM [12] is applied until the requirements on theSLL for the synthesized

difference pattern are satisfied. It is worth to notice that in theI −CPM [19], whose workflow

is schematically outlined in Fig. 2, the optimization of theSLL is obtained as a by-product. As

a matter of fact, thebare version of theCPM [12] concerns the definition of the “best com-

promise” difference pattern close as much as possible to theoptimal one through an excitation

matching procedure. Nevertheless, enforcing theCPM to iteratively approximate an optimal

difference pattern with a referenceSLL lower and lower, it allows to reduce theSLL of the

synthesized pattern and therefore to satisfy user-defined constraints.
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The strategy proposed in this work, namely theModified Contiguous Partition Method(M −

CPM), tries to to explore thesolution tree[12], directly looking for the solution with minimum

SLL, unlike the one guaranteeing the best least-square patternmatching. The solution with the

lowestSLL is searched by means of theborder element method(BEM) described in [12].

Towards this aim, the following cost function is considered

ΨM−CPM (A, W ) = min
u,v

{SLL (u, v)} (3)

for the linear and planar case, whereSLL (u, v) is the maximum level of the sidelobes outside

the main lobe region. Let us we refer to this procedure as the .

It is worth noting that both theI −CPM and theM −CPM allow the simultaneous definition

of all the problem unknowns in a reliable and efficient way since the are based on theCPM .

As a matter of fact, whether on one hand the final sub-array aggregation is obtained through the

BEM , which computational efficiency has been pointed out in [2],on the other hand the defi-

nition of the sub-array weights does not increase the computational burden, since an analytical

relationship [12] is considered:

wCPM
q =

[

∑N
n=1 δanq (snβn)

∑N
n=1 δanq (sn)2

]

; q = 1, ..., Q (4)

whereB = {βn; n = 1, ..., N} is the set of optimal difference excitations [17].

3.2 Two-Step Hybrid Approaches

Inspired by the investigations on the synthesis of difference patterns carried out in [21], it has

been recently discussed in [10] how the definition of the sub-array weights can be formulated

as the solution of a convex programming problem, once the clustering of the array elements is

given. However, in [10] the solution of a theCP problem is required every time a new sub-

array configuration is obtained by means of the an approach based on Simulated Annealing

(SA). Therefore, theSA − CP approach turns out to be affected by an unavoidably and high

computational cost.

In order to cope with this drawback, in the following two new hybrid (two-step) approaches

are proposed, where the solution of theCP problem is required only once during the whole
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synthesis process. The flowchart of both the approaches is schematically depicted in Fig. 2.

More specifically, at the first step the sub-array configurations are computed according to the

principles of either theM −CPM or theI −CPM [18]. Successively, the sub-array weights,

W opt =
{

w(opt)
q ; q = 1, ..., Q

}

, of the compromise feed network are computed so that theSLL

of the afforded pattern is below a pre-fixed threshold. The following cost function

ΨCP (W ) =
∂Re {f (u, v)}

∂u∂v

∣

∣

∣

∣

∣

u = u0

v = v0

(5)

is minimized subject to∂Im{f(u,v)}
∂u∂v

∣

∣

∣

u = u0

v = v0

= 0, tof (u0, v0) = 0 and a function descriptive of

an upper maskUB (u, v) on the synthesized difference pattern. Moreover,Re andIm denotes

the real and imaginary part, respectively and(u0, v0) is the boresight direction. Towards this

end, a standardCP procedure is used, whose initial guess solution is given byW (0) as computed

through Eq. (4).

4 Numerical Simulations and Results

In order to show the effectiveness and the versatility of theproposed approaches, different syn-

thesis problems concerning linear (small and large) as wellas planar monopulse array antennas

are shown in this section. In order to better point out the advantages and limitations of the si-

multaneous/global optimization and of the hybrid procedures, the numerical analysis has been

subdivided in two parts. The first one (Sect. 4.1) concerns with the syntheses of small linear

arrays, where the total number of unknowns is small (N ≤ 20) and both global and hybrid

approaches reach the final solution in a limited amount of time (i.e., in the order of one minute

or less). The capability to deal with large linear arrays andplanar apertures, characterized by a

large number of radiating elements, is then considered in Sect. 4.2. Comparisons with bench-

marks already reported in the literature are considered where available.
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4.1 Small Linear Arrays Synthesis

In the first test, let us consider a linear array ofN = 20 elements equally spaced ofλ/2. The

sum excitations are chosen to afford a Villeneuve pattern with SLL = −25 dB andn = 4

[22]. The number of sub-arrays has been set equal toQ = 5. In this case the results obtained

by means of the proposed approaches are compared with the pattern synthesized by means

of the constrained Excitation Matching Method(EMM) of [11], where the final pattern was

characterized bySLL = −23.4 dB.

As far as the proposed approaches are concerned, the optimaldifference excitation set consid-

ered in theM −CPM is chosen to correspond to the one used at the last step of theI −CPM .

Moreover, since the constrainedEMM [11] is also an excitation matching procedure, we force

theI − CPM to avoid a reference target withSLL lower than that considered in [11] (i.e., a

modified Zolotarev difference pattern withSLL = −25 dB, n = 4 andǫ = 3 [23]).

The sub-array configurationsAopt
I−CPM , Aopt

M−CPM as well as the corresponding sub-array gains

W opt
I−CPM , W opt

M−CPM obtained at the final iterations by the two global optimization techniques

are summarized in Tab. I. The corresponding patterns are shown in Fig. 3. As expected,

improvements in term ofSLL minimization are given by theM−CPM with aSLL lowered of

almost2 dB (i.e.,SLLI−CPM = −22.4 dB vs. SLLM−CPM = −24.3 dB). In this experiment,

only theM − CPM outperforms theEMM in terms ofSLL minimization. As far as the

computational burden is concerned, thanks to the computational efficiency of theBEM [12]

and by virtue of the fact that the sub-array weights are computed analytically, the required

CPU time is equal toTI−CPM = 0.05 sec andTM−CPM = 0.24 sec, while kI−CPM = 19 and

kM−CPM = 4 is the total number of cost function evaluations.

In order to complete the analysis, Fig. 4 reports the values of the cost function of theI −CPM

as well as that of theM − CPM . Since two incommensurable quantities are minimized, in

order to make the comparison meaningful the following relationship has been considered for

the plots of the fitness

Λ = 1 −
|ξk − ξmax|

|ξmax|
, k = 1, ..., K (6)

whereξk assumes either the valueΨM−CPM
k (3) or ΨI−CPM

k [18], according to the use of the

M − CPM or I − CPM , respectively. Moreover,ξmax = maxi=1,...,K {ξi} is the maximum

fitness value obtained throughout the whole optimization process.
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As a second step, the final aggregations obtained by means of the bare approaches (Tab. I)

are considered as fixed clustering in theH − ICPM andH − MCPM , i.e., Aopt
H−ICPM =

Aopt
ICPM andAopt

H−MCPM = Aopt
MCPM , respectively. Then, the sub-array weights are determined

through the subroutine FMINCON [24], where the maskUB (θ) has been set to haveBW =

BWEMM and uniform level of sidelobes. Accordingly, starting froma guess solution equal

to W
(0)
H−ICPM = W opt

ICPM and W
(0)
H−MCPM = W opt

MCPM , the weights of the sub-arrays are

computed by the two hybrid approaches and the correspondingresults are reported in Tab. I

. Also in this case, the synthesized patterns are shown in Fig. 3. It is worth noting that both

the solutions achieved by the hybrid approaches have aSLL below the one obtained with the

EMM [11], i.e., SLLHI−CPM = −24.4 dB, SLLHM−CPM = −25.8 dB vs. SLLEMM =

−23.4 dB. Moreover, the hybrid versions are more effective in term ofSLL minimization than

the respective bare procedures, with an improvement of2 dB and1 dB for the HI − CPM

andHM −CPM , respectively. As a matter of fact, notwithstanding theCP problem is aimed

at the maximization of the difference slope, the same hybridapproaches can be used for the

optimization of theSLL, as pointed out in [10].

Fig. 5 reports the valuesΨCP
k , k = 1, ..., K (k being the iteration index) as well as the maximum

distanceCθ between the actual pattern and the mask

Cθ
k = maxθ {fk (θ) − UB (θ)} −π

2
≤ θ ≤ π

2
(7)

wherefk (θ) is the array factor of the trail solution at thek-th iteration. As far as the costs of

the subroutine FMINCON [24] are concerned, let us first pointout that the number of function

evaluations to reach the final solutions is equal tokH−ICPM = 1001 andkH−MCPM = 83.

The overallCPU-time required to obtainW opt
H−ICPM andW opt

H−MCPM amounts toTH−ICPM =

61.22 sec andTH−MCPM = 9.66 sec, with a non-negligible cost saving of almost six times for

theHM − CPM against theHI − CPM .

As a second experiment, let us consider one of the benchmark of [10], previously proposed

in [14]. The number of sub-array was set toQ = 6 and the sum excitations fixed to those

of a Dolph-Chebyshev pattern withSLL = −20 dB [25], while the difference excitations are

those of a Zolotarev pattern withSLL = −31 dB [26]. Similarly to the previous case, the

synthesis problems consists in defining the sub-array clustering and weights in order to obtain a

compromise difference beam with the lowestSLL, once the pattern beamwidth has been fixed
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to that obtained byDifferential Evolution(DE) optimization in [14].

The sub-array configuration achieved in [10] in the case ofSLL optimization wasAopt
SA−CP =

[1 5 2 3 3 4 2 5 6 1 1 6 5 2 4 3 3 2 5 1] with a maximumSLL = −30 dB. For the sake of compari-

son, the result achieved by theSA−CP in the case of maximization of the slope (where a value

SLL = −29.50 dB was reached) has been reported in Fig. 6 as well as the one obtained with

theDE-based approach [14], together with those synthesized through the proposed approaches.

Concerning the two globalCPM-based approaches, theI−CPM and theM −CPM achieve

two different sub-array configurations, namelyAopt
I−CPM = [2 4 5 6 6 6 5 4 3 1 1 3 4 5 6 6 6 5 4 2]

andAopt
M−CPM = [1 3 4 5 6 6 4 3 2 1 1 2 3 4 6 6 5 4 3 1], among the126 solutions defined in the so-

lution tree [12]. The corresponding sub-array weights turns out beingW opt
I−CPM = {0.1641, 0.2422, 0.4652, 0.6917

andW opt
M−CPM = {0.2081, 0.4652, 0.6917, 0.8776, 0.9840, 1.0044}. Moreover,TI−CPM =

0.001 sec, TM−CPM = 0.267 sec and kI−CPM = 12, kM−CPM = 10. Also the solutions

achieved by the hybrid versions are shown in Fig. 6. In these cases,kHI−CPM = 15 and

kHM−CPM = 16 function evaluations were needed with a requiredCPU time of THI−CPM =

2.703 sec andTHM−CPM = 2.719 sec. The corresponding sub-array weights areW opt
HI−CPM =

{0.6676, 0.9174, 1.7668, 2.6966, 3.4241, 3.8810} andW opt
HM−CPM = {0.8019, 1.8409, 2.6401, 3.5552, 3.7342

It is interesting to note how all the solutions defined by means of the proposed approaches

outperform that of [14], whereas only the solutions obtained by means of hybrid approaches

HI − CPM andHM − CPM are able to enhance the performances of [10]. As a matter of

fact SLLI−CPM = −28.81 dB , SLLM−CPM = −29.12 dB, SLLHI−CPM = −30.09 dB and

SLLMI−CPM = −30.13 dB. In order to complete the analysis, the behavior of the objective

functions for the global optimization procedures as well astheir hybrid versions are reported in

Fig. 7(a) and Fig. 7(b), respectively.

4.2 Large Linear Arrays and Planar Apertures

This section is aimed at analyzing the performances of the proposed approaches when dealing

with the synthesis of array with a large number of elements. In the first example a linear aperture

of length100λ is considered, whitN = 200 elements equi-spaced ofλ
2
. The sum excitations are

fixed to afford a Dolph-Chebyshev pattern [25] withSLL = −25 dB. The number of available

sub-array isQ = 6. This synthesis problem was previously dealt with in [12]. Since a well
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known trade-off exists between pattern beamwidth andSLL, theI − CPM is not allowed to

use reference targets whoseSLL is below the one taken into account in [12] (i.e., a Zolotarev

difference pattern [26] withSLL = −30 dB). Fig. 8 shows the compromise difference patterns

synthesized by means of the proposed procedures. As expected, the solution obtained with the

I − CPM is the same obtained with theCPM [12]. The behavior of the fitness values for the

global and hybrid approaches are shown in Fig. 9(a) and Fig. 9(b), respectively.

Although all the solutions show a good behavior in term of sidelobes rejection, theHM−CPM

outperformed the other approaches withSLLHM−CPM = −27.1 dB, while SLLI−CPM =

−25.2 dB, SLLM−CPM = −26.2 dB andSLLHI−CPM = −26.5 dB. The sub-array configu-

rations as well as the corresponding sub-array weights are given in Tab. II.

Concerning the computational costs, the number of cost function evaluation and the required

CPU time for each approach are reported in Tab. III. It is worth noting that in this case the

computational burden of theCP problem is non-negligible (i.e.,THI−CPM = 4105.12 and

THM−CPM = 957.51 sec). Such a drawback is principally due to the computation ofCθ, where

the pattern has to be sampled densely in order to obtain satisfactory results. Likewise, the

computation of the power pattern is necessary also in theM − CPM to evaluate theSLL for

each trial solution. Therefore, theI − CPM [18] turns out to be in this case the most efficient

strategy.

In the last example, in order to fully exploit the capabilities of theCPM-based approaches, let

us consider a planar array with circular boundaryr = 4.85 λ andN = 300 elements equally-

spaced ofd = λ
2

along the two coordinates. The sum mode is set to a circular Taylor pattern

[27] with SLL = −35 dB andn = 6 . Moreover,Q = 3 sub-arrays have been considered. The

synthesis problem has been originally dealt with in [9] by means of aSA-based algorithm and

then considered as benchmark in [19][16]. There, thesidelobe ratio(SLR) defined as

SLR (φ) =
SLL (φ)

maxθ [f (θ, φ)]
, 0 ≤ θ <

π

2
(8)

was optimized. Unlike [19], in this case we are aimed at synthesizing a compromise difference

pattern with aSLL low as much as possible. As far as theI−CPM is concerned, the reference

excitations (at the last iteration) was set in [19] to those aBayliss pattern [28] withSLL =

−35 dB andn = 6. In this case, theSLL was equal to the one obtained with theSA-based

approach (i.e.,SLLSA = SLLI−CPM −19 dB). Although an improvement of the performances
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was expected by using its hybrid version, in this case the achieved compromise configuration

affords a pattern withSLLHI−CPM = −18.9 dB, worse than the one obtained with theI −

CPM . On the contrary, theM−CPM synthesized a solution withSLLM−CPM = −24.45 dB,

almost than5 dB below the solution of [9]. Moreover, an additional improvement of more than

2 dB was gained when using theHM − CPM (i.e.,SLLM−CPM = −26.55 dB).

Fig. 10 show the 2D plots of the relative power patterns for all the compromise solutions. The

corresponding sub-array configurations are shown in Fig. 11, while the sub-array weights for

the four approaches are summarized in Tab. IV. Although the proposed approaches are aimed

the optimization of the maximumSLL on the whole aperture, in this case bothM −CPM and

HM − CPM guaranteed that also the values ofSLR were lower than that of [9] (Fig. 12).

Concerning the computational costs, it turns out thatTHI−CPM = 24186.6 sec (almost seven

hours) andTHM−CPM = 39036.8 sec (more than ten hours). Moreover,kHI−CPM = 6621 and

kHM−CPM = 10001. On the contrary, the computational cost reduces toTM−CPM = 537.9 sec,

TI−CPM = 165.5 sec, andkM−CPM = 6, kI−CPM = 81 for the bare approaches.

5 Conclusions

In this paper, innovative approaches to the synthesis of theoptimal compromise between sum

and difference patterns for sub-arrayed monopulse array antennas have been presented. The

synthesis of linear and planar array has been deal with, where the problem at hand has been

formulated as the definition of the sub-array configuration and weights of these latter to min-

imize theSLL of the synthesized difference beam. The definition of the unknowns has been

simultaneously carried out according to a global optimization schema, theM −CPM , and the

results have been compared with the previously proposedI − CPM . Unlike theI − CPM ,

the compromise solution with minimumSLL has been directly looked for among the solutions

belonging to thesolution tree. In a different fashion, theHI − CPM and theHM − CPM

have shown better performance in term ofSLL minimization with respect to the corresponding

one-step approaches. In these case, the convexity of the problem with respect to a part of the

unknowns has been exploiting, where the synthesis problem has been reduced to solve aCP

problem for a fixed clustering. The effectiveness of the proposed techniques in terms ofSLL

minimization has been assessed by showing some experimentsconcerned with small as well as
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large array synthesis problems, hardly to manage with stochastic optimization procedures for

the arising computational burden. Moreover, by virtue of the fact that the solution of theCP

problem is required only once, the hybridCPM-based strategies seem to represent promising

tools to be further analyzed and extended to other antenna geometries.
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FIGURE CAPTIONS

• Figure 1. Planar array geometry.

• Figure 2. Pictorial representation of the CPM-based approaches.

• Figure 3. Small Linear Array(N = 20, d = λ
2
, Q = 5) - Relative power patterns obtained

by means of the proposed approaches and theEMM [11].

• Figure 4. Small Linear Array(N = 20, d = λ
2
, Q = 5) - Behavior of the cost function of

theI − CPM andM − CPM versus the iteration indexk.

• Figure 5. Small Linear Array(N = 20, d = λ
2
, Q = 5) - Behavior of the cost function

and evolution of the distance from the constraints for theHI −CPM andHM −CPM

versus the iteration indexk.

• Figure 6. Small Linear Array(N = 20, d = λ
2
, Q = 6) - Relative power patterns obtained

by means of the proposed approaches, theSA − CP [10] and theDE [14].

• Figure 7. Small Linear Array(N = 20, d = λ
2
, Q = 6) - Behavior of the cost function of

the (a) I −CPM andM − CPM and of the (b) HI − CPM andHM −CPM versus

the iteration indexk.

• Figure 8. Large Linear Array(N = 200, d = λ
2
, Q = 6) - Relative power patterns

obtained by means of the proposed approaches and theCPM [12].

• Figure 9. Large Linear Array(N = 200, d = λ
2
, Q = 6) - Behavior of the cost function

of the (a) I−CPM andM −CPM and of the (b) HI−CPM andHM −CPM versus

the iteration indexk.

• Figure 10. Planar Array Synthesis(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Relative

power patterns obtained by means of (a) the I − CPM , (b) the M − CPM , (c) the

HI − CPM and (d) HM − CPM .

• Figure 11. Planar Array Synthesis(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Sub-array

configurations obtained with (a) theI − CPM and (b) theM − CPM .
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• Figure 12. Planar Array Synthesis(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Plots of

the synthesizedSLR values by means of the proposed approaches and theSA [9] in the

rangeφ ∈ [0o, 80o].
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TABLE CAPTIONS

• Table I. Small Linear Array(N = 20, d = λ
2
, Q = 5) - Sub-array configurations and

weights.

• Table II. Large Linear Array(N = 200, d = λ
2
, Q = 6) - Sub-array configurations and

weights.

• Table III. Large Linear Array(N = 200, d = λ
2
, Q = 6) - Fitness evaluations andCPU

time.

• Table IV. Planar Array Synthesis(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Sub-array

weights obtained by means of the proposed approaches and theSA [9]).
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N = 20 AICPM , AH−ICPM 3 4 5 5 5 4 3 3 2 1 1 2 3 3 4 5 5 5 4 3

AMCPM , AH−MCPM 3 4 5 5 5 4 4 3 2 1 1 2 3 4 4 5 5 5 4 3

Q = 5 W ICPM 0.1738 0.5083 0.9561 1.3299 1.4775

WMCPM 0.1738 0.5083 0.8358 1.2042 1.4775

WH−ICPM 0.2896 0.7476 1.4378 2.1858 2.3207

WH−MCPM 0.3423 0.7816 1.6012 2.1233 2.7166

Tab. I - G. Oliveri et al., “Synthesis of Monopulse ...”
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M = 100 aI−CPM
n , n = 1, ...,M 1111111111111122222222333333334444444455555555566666666666666666666666666666666555555555444444433331

aM−CPM
n , n = 1, ...,M 1111111112222222333333333333334444444444555555555555666666666666666666666655555555555444444444443332

Q = 6 W I−CPM
0.8206 1.4472 2.0200 2.5000 2.9000

W M−CPM
0.3739 1.0060 1.8017 2.5520 3.0300

W HI−CPM
0.2132 0.7236 0.9411 1.0909 1.2754

W HM−CPM
0.1134 0.3327 0.6773 1.1001 1.1871

Tab.
II-

G
.O

liveri
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n
o
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...”
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Approach k T [sec]

I − CPM 128 15.6

HI − CPM 383 4105.17

M − CPM 24 519.98

HM − CPM 95 957.51

Tab. III - G. Oliveri et al., “Synthesis of Monopulse ...”
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Approach wH
1

wH
2

wH
3

I − CPM 0.3499 0.9333 1.4170

M − CPM 0.2870 0.8120 1.3886

HI − CPM 0.3684 2.4088 4.0573

HM − CPM 0.3313 0.9719 1.4113

SA [9] 1.69 3.69 5.00

Tab. IV - G. Oliveri et al., “Synthesis of Monopulse ...”
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