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Peak Sidelobe Level Reduction with a Hybrid 
Approach based on GAs and Difference Sets 

Salvatore Caorsi, Andrea Lommi, Andrea Massa, and Matteo Pastorino 

Abstract -- This paper presents an approach for the optimization of the beam pattern produced by massively thinned arrays. The 
method, which combines the most attractive features of a genetic algorithm and those of a combinatorial technique (namely, the 
Difference Sets Method), is aimed at synthesizing massively thinned antenna arrays in order to suitably reduce the peak side-lobe level. 
Selected numerical results are presented in order to assess the effectiveness and reliability of the proposed approach. 

 
Index Terms − Array antennas, massively thinned arrays, difference sets, genetic algorithms, side-lobe control. 

 

I. INTRODUCTION 
Filled antenna arrays are composed of radiating elements placed on a uniform lattice being half-wavelength the distance between 
adjacent points [1]. In order to reduce the element count, cost, weight, power consumption and heat dissipation, a thinning is 
performed by removing a percentage (called thinning percentage) of array elements according to a suitable strategy. Massively 
thinned arrays have fewer than half the elements of their filled counterparts. For a fixed antenna size, the massive thinning 
produces antenna arrays much cheaper than completely filled arrays, both in terms of hardware and computational complexity. 
Moreover, although for a drastic thinning the main lobe width remains approximately unaltered, however, it usually results in a 
reduced antenna gain and in a loss of side-lobe level control. 

In the past, in order to overcome these drawbacks, many approaches have been proposed. The properties of random antenna 
arrays were studied [1], and thinning algorithms proposed [2][3] with limited effectiveness concerning the side-lobe control.  

Recently, stochastic optimizers like simulated annealing (SA) [4] or genetic algorithms (GAs) [5] have been successfully 
applied by several authors [6][7], showing that an efficient side-lobe control can be attained achieving at the same time a high 
thinning percentage.  

On the other hand, the applicability of cyclic difference sets (CDSs), which are combinatorial mathematics tools [8], to sparse 
antenna array synthesis has been deeply investigated [9][10] and the method has been applied to the design of massively thinned 
arrays, attaining array configurations characterized by uniform spatial coverage over the array aperture. Moreover, in 
correspondence with an infinite array having the displacement of the elements specified by the replication of a CDS, the arising 
power pattern of the array factor presents leveled side-lobes [10]. However, as suggested by Leeper, further improvements in the 
framework of real arrays could be achieved combining CDSs with stochastic optimization methods. Following this approach, this 
paper presents a new hybrid procedure whose effectiveness is assessed by means of a comparative analysis with standard GAs 
(SGAs) and CDS-based methods.  

Moreover, Section II briefly introduces the antenna array notation. In Section III, the most attractive properties and current 
limitations of CDS and GA-based methods are discussed. In the same section, the application of the integrated approach is 
shown. This approach overcomes the limitations of each method when applied independently. Finally, in Section IV, a numerical 
assessment is performed in order to evaluate the effectiveness of the hybrid approach in dealing with the design of linear and 
planar antenna arrays. 

II. ANTENNA ARRAYS NOTATION 
The array factor for a linear half-wavelength spaced lattice array is defined as: 
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where θsin=u , θ being the angular shift with respect to the normal direction, V is the number of 
2
λ -spaced lattice locations, 

 if an element is present at m-th lattice location, otherwise 1=ma 0=ma . Similarly, the array factor for a yx VV ×  planar half-
wavelength spaced array is given by: 
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where  and φθ= cossinu φθ sinsin=v  are the direction parameters and 1, =nma  or 0 if an element is present or not at the location 
(m,n). 

According to this notation, the peak side-lobe level (PSL) is defined as the maximum value of the array power pattern (the 
array factor multiplied by the element pattern) in the side-lobe region [1]. 

III. HYBRID SYNTHESIS METHOD 
In this section, the key-features of CDSs and GA-based methods are analyzed in order to effectively define a way of combining 

the two approaches. 
 

A. Cyclic Difference Sets 
 

A CDS, ),,( ΛKVD , (defined by a triple of integer numbers ( )Λ,, KV ) is a set of integers ( ){ };1,...,1,10 −=−≤≤= KkVdD k , 
such that ( ){ }lhdd Vlh ≠− ;mod  appears exactly  times. It is well known [10], that the power pattern of the array factor of an 
infinite CDS-based array (obtained by placing the elements at the locations specified by the difference set) is a two-valued train 
of impulses presenting perfectly leveled side-lobes. As far as real arrays are concerned, the arising power pattern of the array 
factor shows undesired ripples. The greatest ripple is generally located in the neighborhood of the main lobe. However, the CDS 
method guarantees more effective sub-optimal array synthesis in terms of PSL with respect to random elements placement. It 
results that  
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for linear and planar arrays, respectively [10]. 

 
B. Genetic Algorithms 
 

GAs are stochastic optimization methods extensively applied to antenna array optimization problems [6][7][11][12]. The basic 
working strategy can be summarized as follows. The approach starts by constructing a population Npop trial solutions, 

{ }pop
trial
p NpP ,...,1, =Φ= , which are coded into binary strings (called chromosomes) indicated by 

{ }Vmam
trial ,...,1, ==Φ                                                                              (5) 

 
for the linear case, and by 

 
{ }yxnm
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for the planar displacement. The population undergoes the iterative application of the genetic operators, (namely, the crossover, 
ξ, the reproduction, ζ, and the mutation, μ) according to a trial solution’s validity measure called fitness, F, until a stable value 
for the fitness function has been reached or a maximum number of iterations is achieved, I .  

As far as the array synthesis is concerned, the fitness function is defined as follows 
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for linear and planar array, respectively; S denotes the side-lobes region. 

GAs demonstrated their effectiveness in synthesizing highly optimized solutions. However, an accurate tuning is necessary and 
generally the convergence rate considerably reduces in the neighborhood of the optimal solution. These drawbacks could be 
partially avoided if all the available a-priori information is efficiently taken into account. 
 



C. Hybrid Optimization Strategy 
 
As suggested by Leeper [10], the combinatorial and stochastic methods could be combined, in order to take advantage from 

their good characteristics and to compensate for their drawbacks.  
Therefore, ripples formation caused by CDS could be corrected in some way by GA search capabilities, while the uniform 

spatial coverage of CDS-optimized arrays could be helpful to speed up the convergence of the genetic procedure. One possible 
way of implementing this approach is to consider CDS-based arrays as a-priori knowledge to be inserted in the genetic search 
process in order to improve its efficiency. To this end, let us consider the following steps aimed at transferring good CDS-
derived schemata [5] into the GA population. At the initialization step ( 0=i , i being the iteration index), the GA population is 
composed as follows 
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where  is the cyclic difference set, the p-th cyclic shift of , and ),,(

0
ΛKVD [
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pDμ  a randomly mutated 

cyclic shift. Moreover, during the iterative loop of the GA ( ), the mutation occurs in order to introduce new unexplored 
solutions into the search space. However, in order to keep higher order CDS-derived schemata, trial solutions having binary 
configurations belonging to higher-order schemata are mutated only in chromosome positions out of the schemata locations. 
These mechanisms are aimed at constraining the GA to synthesize array configurations similar to CDS-based ones, but with 
limited ripple amplitudes thanks to evolutionary capabilities.  

1≥i

Hereinafter we will refer to this hybrid GA as difference set genetic algorithm (DSGA). 
 
 
 
 

IV. NUMERICAL RESULTS 
 
In the following, CDSs based numerical results will be compared with those obtained by stochastic optimizers, pointing out the 

advantages of the combination of the two approaches. The assumed parameters for the GA-based procedures are: 200=I , 
,  (crossover probability), and 100=popN 9.0=ξP 05.0=μP  (mutation probability). 

A. Application to Linear Arrays 
 

As a first test case, the reference CDS defined by 63=V , 32=K , and 16=Λ  is considered. This configuration has been 
investigated in [10] as a representative test case of CDS properties.  

As suggested by Leeper, by applying a number of 1−V  cyclic shifts to a valid CDS, it is possible to generate other valid sets 
whose properties can potentially be superior to those of the original set.  

To this end, a (63,32,16) difference set has been calculated and the mentioned shift operations performed. The best-produced 
CDS (whose binary sequence generates a PSL of –13.53 dB) has been considered the final solution. This result is representative 
of the good capabilities of CDSs for array optimization since it is really close to random array average value [1]. 

Consequently, in order to evaluate the effectiveness of SGA in facing with the same synthesis problem, many algorithm 
executions have been performed and the results stored in order to allow detailed comparisons. By using the SGA-based method, 
it has been possible to achieve a PSL equal to –14.60 dB. As far as this test case is concerned, the performance of SGA slightly 
overcomes that of CDS, although the latter is a good method as well, which is able to provide optimized results as confirmed by 
the statistics reported in Table I. 

However, by combining the two approaches, it has been possible to obtain a lower PSL. Figure 1 shows the arising power 
patterns in correspondence with the element displacements (Fig. 2) synthesized according to the CDS (Fig. 1(a)), the SGA (Fig. 
1(b)), and the DSGA (Fig. 1(c)) method, respectively. The DSGA-optimized array is characterized by a PSL of –15.39 dB. 

The advantage of combining the two methods resides in the following consideration. The ideal behavior of an infinite length 
CDS-based power pattern does not appear in the power pattern of Figure 1(a) because of the infinite sequence used to specify 
array elements locations had to be truncated to a single difference set, thus causing side-lobes to raise. Clearly, GAs can help in 
keeping under control the unwanted ripple, mixing the good side-lobes properties of CDS arrays with the evolutionary search 
capabilities, as confirmed by the statistics reported in Table I.  
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Fig. 1. Linear array V = 63, K = 32, Λ = 16 - Power patterns produced by arrays optimized through: (a) CDS, (b) SGA, and (c) DSGA. 

0 15 31 46 62
Array Lattice Location

       CDS 
 SGA 

DSGA 

 
Fig. 2. Linear array V = 63, K = 32, Λ = 16 – Element displacement for generating the power patterns depicted in Fig. 1 

 



In order to further assess the capabilities of the proposed method, a comparison with the CDS-based approach and state-of-the-
art GAs [6,11] in thinning a 200 elements array, has been performed.  

To this end, the (199, 99, 49) difference set has been considered, whose best cyclic shift produces a SLP of         –15.99 dB. 
This difference set represents the a-priori knowledge to be inserted in the genetic loop of DSGA. Figure 3 shows the achieved 
result when the number of array elements is fixed to K = 99. For completeness, the best CDS has been also reported (b) jointly 
with the array placement (c). 
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Fig. 3. Linear array V = 199, K = 99, Λ = 49 - Power patterns produced by arrays optimized through: (a) CDS and (b) DSGA. 

(c) Element displacement. 
 

The best DSGA synthesized array yields a SLP of –19.24 dB, showing that the proposed integration has succeeded in lowering 
the SLP of CDS-based array of more than 3 dB. 

Up to now, according to the aim of the proposed method, only massively thinned arrays have been considered. However, in 
order to allow a comparison with published literature [6][11], the effectiveness of DSGA-based method is also assessed in 
synthesizing arrays with an inferior thinning percentage.  

The best result in the literature for the thinning of a 200 elements array with isotropic elements is reported in [11] (SLP = – 
22.79 dB; K = 154). On the other hand, the use of a K = 150 directional elements array ( )cos(θ  being the corresponding element 
pattern) yields a SLP equal to –23.69 dB [6]. 
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Fig. 4. 200 elements array - Isotropic elements 
Power pattern of the array factor: (a) [11] and (b) DSGA array.  

(c) Elements displacement. 
 

Thanks to the integration between GAs and CDS, better performance has been obtained in both situations. Figure 4 shows 
patterns and element locations of the synthesized arrays when isotropic elements are used. In more detail, CDS array presents a 
SLP equal to –15.99 dB, while the SLP of the DSGA synthesized array is equal to –23.70 dB by using 139 elements.  
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Fig. 5. 200 elements array - )cos(θ  element pattern 

Power pattern of the array factor: (a)  CDS array, (b) [6] and (c) DSGA array. (d) Elements displacement. 
 



For completeness, Figure 5 shows the power patterns and elements displacements when an )cos(θ  element pattern is taken into 
account. CDS-based array yields a SLP of –17.10 dB, while DSGA produced a 132-element configuration with a SLP of –24.77 
dB, that favorably compares with literature results as shown in Table 2. 
 
B.   Application to Planar Arrays 

 
CDSs can be used to produce low sidelobes planar arrays too, provided that binary sequences are arranged on a two-

dimensional lattice such that good autocorrelation properties are preserved. A way to do this was proposed in [10], and it has 
been used for evaluating the (63,32,16) CDS used as the reference solution for the first case of linear array optimization. 
Accordingly, an array lattice characterized by 79×=× yx VV positions has been considered.  

Again, the evaluation of all the CDS and their V-1 cyclic shifts identifies the best array element configuration. Consequently, 
the numerical analysis indicated a minimum PSL equal to –12.47 dB, that is, a much better result than those obtained by random 
array placements. 

On the other hand, SGA has been executed without any use of a-priori knowledge, in order to assess the effectiveness of a bare 
genetic algorithm procedure. SGA synthesized an optimal array configuration yielding a PSL equal to –13.69 dB. Moreover, the 
worst result achieved during the multiple running of the SGA is very close to the best obtained with CDS-based array (see Table 
I). 

Finally, DSGA has been used in order to point out the capabilities of the combined approach. The final synthesis presents a 
PSL equal to -14.26 dB.  
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Fig. 6. Planar array power patterns produced by arrays optimized through: (a) CDS, (b) SGA, and (c) DSGA. 

 
 



0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

x [λ]

y 
[ λ

]

CDS 
SGA 
DSGA

 
Fig. 7. Planar array element displacements  

(× CDS method, □ SGA method, ○ DSGA method). 
 
The resulting array power patterns are shown in Figure 6 and the corresponding element displacement patterns are reported in 

Figure 7. 
The stability of the numerical results (see the statistics reported in Table I), clearly confirms that it is profitable to combine the 

combinatorial and the evolutionary approaches for the planar array synthesis problem, too. 

VI. CONCLUSIONS 
Difference sets and genetic algorithms' performances have been evaluated by considering the peak side-lobe level reduction in 

the power pattern of the array factor generated by massively thinned arrays. It has been shown that the combined use of the two 
methods allows gaining a good side-lobe control. Moreover, it has been possible to obtain satisfactory results even if the thinning 
percentage of the original cyclic difference set has been altered. This seems to indicate that arbitrarily long and thinned arrays 
can be suitably synthesized, provided that a suitable CDS (that is, with similar parameters) be used for boosting the GA 
performance. Future works, currently under development, will be aimed at further integrating cyclic difference sets with 
stochastic optimizers in order to speed up the convergence rate of the optimization procedure. 
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TABLE I 
(63, 32, 16) CDS BASED PEAK SIDELOBE LEVEL OPTIMIZATION – NUMERICAL RESULTS 

 
PSL Linear PSL Planar 

Method Best Worst Avg Var Best Worst Avg Var 
CDS -13.53 -9.53 -11.44 1.21 -12.47 -7.87 -9.44 1.35 
SGA -14.60 -13.68 -14.10 0.23 -13.69 -12.44 -13.00 0.23 

DSGA -15.39 -14.07 -14.49 0.17 -14.26 -12.55 -13.23 0.39 

 
 
 
 
 
 
 

 
TABLE II 

(199, 99, 49) CDS BASED PEAK SIDELOBE LEVEL OPTIMIZATION – NUMERICAL RESULTS 
 

Isotropic Elements )cos(θ  Element pattern 
Method 

SLP [dB] % Thinning (N. el) SLP  [dB] %Thinning (N. el) 
CDS -15.99 >50% (99) -17.10 >50% (99) 

Best in Lit. -22.79 [11] 23% (154)  [11] -23.69 [6] 25% (150) [6] 
DSGA 99 el. -19.24 >50% (99) -21.59 >50% (99) 

DSGA -23.70 30.5% (139) -24.77 34% (132) 
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