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AComparative Assessment among Iterative Linear Solversdealing with Eletromagneti Integral Equations in 3DInhomogeneous Anisotropi Media
Gabriele Franeshini, Aria Abubakar, Tarek M. Habashy, and Andrea Massa

AbstratThis paper deals with full-vetorial, three-dimensional, eletromagneti satteringproblems formulated in terms of integral sattering equations. The weak formulationis applied in order to e�etively deal with inhomogeneous anisotropi media andthe arising set of algebrai linear equations is solved through some of the mostreent and e�etive iterative linear solvers for allowing a detailed assessment of theirperformanes when faing with three-dimensional omplex senarios.

Index Terms - Eletromagneti Sattering, Forward Problem, Three-Dimensional Ge-ometry, Anisotropi Media, Integral Equations, Weak-Formulation.2



1 IntrodutionModeling eletromagneti �elds in realisti three-dimensional (3D) senarios is an ap-pealing researh topi. However, the solution of the arising eletromagneti satteringproblems is a ritial issue sine it requires the use of numerial proedures with a non-negligible omputational load, espeially when large and omplex realisti on�gurationsare taken into aount.As far as two-dimensional (2D) geometries and dissipative objets are onerned, Rih-mond proposed in [1℄ the use of the Method of Moments (MoM ). A sti�ness matrix,whose dimensions depend on the size of the investigation domain, the working frequeny,and the ontrast of the dieletri objets, is generated and suessively inverted. Theneed of inverting suh a matrix strongly limits the appliation of the MoM espeiallywhen the problem size grows. In order to redue the omputational load and the requiredlarge amount of omputer memory, the so-alled k-Spae Method has been introdued[2℄. Suh an approah ombines an iterative approah and the Fast Fourier Transform(FFT ) algorithm for e�iently omputing the spatial onvolution operator that oursin the integral sattering equations [3℄. A further improvement, onerned with 2D-TMon�gurations, has been suessfully obtained by applying the Conjugate Gradient FastFourier Transform (CG-FFT ) [4℄[5℄[6℄[7℄[8℄[9℄.Conerning 2D-TE senarios, the problem has been addressed by Zwamborn and van denBerg [10℄ developing a weak-form of the integral sattering. A suessive extension to 3Disotropi ases has been presented in [11℄ and further improved for allowing a more easyand e�etive numerial implementation [12℄[13℄.In this paper, the approah presented in [13℄ is reformulated for dealing with 3D inhomo-geneous anisotropi media. The solution of the arising algebrai linear system is addressedby means of a set of iterative solvers and the performanes of the Conjugate Gradient(CG) approah, the BiConjugate Gradient (BiCG) method, the Stabilized BiConjugateGradient (BiCGStab) tehnique, the Quasi Minimal Residual (QMR) method, and theGeneralized Minimal Residual (GMRES ) algorithm are then ompared. To the best ofauthors' knowledge, although detailed analyzes have been arried out on weak-form-basedtehniques ([10℄[11℄[12℄[13℄[14℄[15℄), this is the �rst time that an exhaustive omparison on3



iterative solvers when dealing with inhomogeneous anisotropi 3D geometries is arriedout.The paper is organized as follows. In Setion 2, the integral formulation of the three-dimensional anisotropi problem is presented. The results of a omparative study amonge�etive iterative linear solvers are shown in Setion 3. Some onlusions are eventuallypresented in Setion 4.2 Mathematial FormulationLet us onsider a data domain R and a omputational (or investigation) domain D gener-ally omposed by an inhomogeneous anisotropi medium of �nite dimension and embeddedin a homogeneous isotropi bakground of onstant permittivity εb, eletri ondutivity
σ′

b, and permeability µb. Suh a senario is illuminated by a known eletromagneti sourede�ned on a support S and desribed through the impressed eletri, J (
rS

), rS ∈ S, andmagneti, K (
rS

), urrent densities.By onsidering a Cartesian oordinate system, a time-harmoni temporal dependene,and non-magneti materials, the eletri �eld satis�es the following equation
▽×▽×E (r) − k2

bE (r) =

k2
bQ (r) · E (r) + iωµbJ

(
rS

)
−▽× K

(
rS

)
,

(1)where k2
b = iωµbσb, σb = σ′

b − iωεb, and Q (r) is the ontrast funtion desribing theanisotropi investigation domain
Q (r) =

1

σb





σxx (r) − σb σxy (r) σxz (r)

σxy (r) σyy (r) − σb σyz (r)

σxz (r) σyz (r) σzz (r) − σb




, r ∈ D (2)

By applying the Green's theorem and the radiation ondition at in�nity, the problemmathematially desribed through Eq. (1) is reformulated in integral form by writing the
4



following relationship
Eb (r) = Ω

[
E (r)

]
= E (r) −

[
k2

b I + ▽▽
]
· A (r) , (3)where Eb (r) is the eletri �eld in a homogeneous and unbounded bakground of omplexondutivity σb and permeability µb, I is the unit dyadi and

A (r) =
∫

D
g (r, r′)Q (r′) · E (r′) dr′ (4)is the eletri vetor potential, the salar Green funtion g (r, r′) being

g (r, r′) =
exp (ikb |r − r′|)

4π |r − r′|
. (5)In order to numerially ompute E (r), the domain D is partitioned using a uniform gridof retangular ells of side ∆x×∆y×∆z where the ontrast Q is assumed to be onstant.Aording to the proedure desribed in [13℄, the integral operators are disretized byapplying the weakening proedure in order to ope with the singularity and the spatialdi�erentiation operators are alulated by using the �nite di�erene rule. In order toproperly deal with anisotropi media, the eletri vetor potential A (r) is numerially-evaluated as follows

A(h) (rm,n,p) = ∆x∆y∆z
∑M

m′=1

∑N
n′=1

∑P
p′=1 g (rm,n,p, rm′,n′,p′)

∑
k=x,y,z Q(h,k) (rm′,n′,p′)E(k) (rm′,n′,p′)

h, k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;

(6)
where rm,n,p identi�es the generi enter-point of a volumetri sub-domain belonging tothe investigation area; M , N and P are the numbers of disretizations along x̂, ŷ and ẑ,respetively; E(k) denotes the k-th omponent of E, and g (rm,n,p, rm′,n′,p′) is omputedas in [13℄. By applying the onvolution theorem of Disrete Fourier Transform (DFT ), itturns out that 5



A(h) (rm,n,p) = ∆x∆y∆zDFT−1
{
DFT [g (rm,n,p)] B

(h) (rm,n,p)
}

h = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;
(7)

where
B(h) (rm,n,p) = DFT

[∑
k=x,y,z Q(h,k) (rm,n,p) E(k) (rm,n,p)

]

h = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P.
, (8)thus allowing a omputationally-e�ient omputation through FFT routines.After disretization, the predition problem is then reasts as the solution of the arisinglinear system of U = 3 × M × N × P equations where the eletri �eld of the bak-ground, E

(k)
b,syn (rm,n,p), k = x, y, z, m = 1, ..., M , n = 1, ..., N , p = 1, ..., P , is a knownquantity beause of the knowledge of the eletromagneti soure. Towards this end,beause of the well-posed nature of the forward problem at hand [17℄, e�etive lineariterative solvers [namely, the well-known Conjugate Gradient (CG) approah, the Bi-Conjugate Gradient (BiCG) method [14℄[18℄ and its stabilized version (BiCGStab) [15℄,the Quasi-Minimal Residual (QMR) approah [19℄, and the Generalized Minimum Resid-ual (GMRES) method or its restarted implementation [20℄ (R − GMRES)℄ aimed atminimizing the distane ρi (i being the iteration index) between the estimated solutionand the atual one, an be pro�tably used thus avoiding time-onsuming inversion pro-edures. More in detail, let us de�ne the �residual � vetor ui, an array of dimension Uwhose omponents are given by
ui(k)

m,n,p = E
i(k)
b (rm,n,p) − E

(k)
b,syn (rm,n,p)

k = x, y, z; m = 1, ..., M ;

n = 1, ..., N ; p = 1, ..., P,
(9)

E
i(k)
b (rm,n,p) being omputed through (3) on the basis of the trial solution estimated atthe i-th iteration, E

(k)
i (rm,n,p), of the iterative proess. Then, the distane is omputedas

6



ρi =

√
∑

k=x,y,z

∑M
m=1

∑N
n=1

∑P
p=1

∣∣∣ui(k)
m,n,p

∣∣∣
2

√
∑

k=x,y,z

∑M
m=1

∑N
n=1

∑P
p=1

∣∣∣E(k)
b,syn (rm,n,p)

∣∣∣
2
. (10)

and minimized by generating a onvergent sequene of trial solutions {
E

(k)
i (rm,n,p) ; i = 1, ..., I

}aording to a suitable iterative approah.Finally, one the distribution of E(k) (rm,n,p), k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p =

1, ..., P ; ∀k = x, y, z, m = 1, ..., M, n = 1, ..., N, p = 1, ..., P is determined, also the sat-tered magneti �eld at rR ∈ R an be easily omputed through the following relationship
H

scatt
(
rR

)
= σb▽

R
×A

(
rR

)
. (11)

3 Numerial ValidationIn this setion, the performanes of the set of representative linear iterative solvers areompared by onsidering, as a referene benhmark, the eletromagneti problem mod-eling the system for the eletromagneti indution well logging largely used in the oilexploration.As far as the eletromagneti soure is onerned, it is a point magneti dipole diretedalong the ν-diretion and represented through a null eletri density (J = 0) and animpulsive magneti urrent (K (
rS

)
= δ

(
rS

)
ν. Consequently, the eletri �eld in thebakground is given by

Eb,syn (rm,n,p) = −▽× g
(
rm,n,p, rS

)
ν = −h

(
rm,n,p, rS

)
× ν

m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P ;
(12)

where 7



h(k)
(
rm,n,p, rS

)
= −

g(rm,n,p, rS)
|rm,n,p−r

S|
r(k)

−rS (k)

|rm,n,p−r
S|

[
1 − ikb

∣∣∣rm,n,p − rS
∣∣∣
]

k = x, y, z; m = 1, ..., M ; n = 1, ..., N ; p = 1, ..., P .

(13)In the �rst test ase, the probing system onsists of: (a) an eletromagneti soure workingat frequeny f0 = 1 KHz and loated at rS = (−50, 0, 0) m [rS ∈ D℄, (b) NR = 41reeivers loated at rR
j =

[
50, 0.0, 5.0 ×

(
j − NR

−1
2

)]
m, j = 0, ..., (NR − 1). Conerningthe ubial omputational domain D, it is inhomogeneous, lD = 50 m in side, and it hasbeen partitioned into a grid of 32×32×32 ells. Two homogeneous isotropi ubi objets

lobj = 12.5 m-sided and haraterized by a ondutivity σ(1)
xx = σ(1)

yy = σ(1)
zz = 10 S

m
and

σ(2)
xx = σ(2)

yy = σ(2)
zz = 10−2 S

m
lie in D at the loations C1 = (−12.5,−12.5,−12.5) m and

C2 = (12.5, 12.5, 12.5) m, respetively. The isotropi bakground is homogeneous with aonstant ondutivity equal to σb = 0.1 S
m
.As far as the iterative proess is onerned, the minimization has been stopped when theondition (ρi < 10−7) was satis�ed and the predition results are shown in Fig. 1 in termsof the values of the magneti �eld omponents at the measurement points in R. As it anbe observed, the plots related to eah solver are almost indistinguishable, but signi�antdi�erenes turns out in terms of the omputational load and onvergene.Figure 2 shows the behavior of the error funtion ρi versus the iteration number j pointingout its monotoni dereasing when the CG, GMRES and R − GMRES tehniquesare used. On the other hand, the remaining approahes (and in partiular the BiCGtehnique) seem to be unstable with fast variations in the values of ρi. However, itsshould notied that the onvergene ratio of the BiCG method signi�antly improvesompared to the standard CG reduing ten times the number of iterations for reahingthe onvergene threshold [see Table I where the average CPU-time per iteration (ti)together with the onvergene index (Iconv), the initialization time (t0), and the total

CPU-time (T ) are given℄. Moreover, with referene to Figure 3 and Table I, it turnsout that the CG, the BiCG, and the QMR need of the same amount of CPU-time periteration ti sine their omputational osts are due to the evaluations (i.e., two evaluationsat eah iteration) of the operator Ω and the remaining vetor/salar produt operations8



require a negligible amount of CPU-time (if ompared to the Ω evaluation).A signi�ant improvement of the omputational performanes is obtained by using the
BiCGStab tehnique sine, in addition to a slight redution of the time per iteration tidue to the smaller number of vetorial produts at eah iteration, the total number ofiterations is almost halved when ompared to those of the BiCG approah. A furtherimprovement is ahieved by the GMRES tehnique sine it requires only one omputationof the operator Ω per iteration even though the CPU-time grows linearly with the numberof iterations beause of the inreasing of the dimension of the Hessenberg matrix. Suha behavior results in the quadrati dependene of the omputation time Ti as shown inFig. 4.In order to avoid the drawbak related to the matrix storage of the GMRES, the R −

GMRES method has been evaluated, as well, by setting Ires = 20. Although, on average,
ti dereases, suh an approah presents a slower onvergene ratio (Fig. 2) than the
GMRES and furthermore, an extra time is needed at eah restart as shown in Figure 3.Suh an event further on�rms the reliability and the omputational e�etiveness of the
GMRES.In the seond test ase, the water-oil ontat model shown in Figure 5 is onsidered.In suh a ase, the omputational domain of size 6.4 × 6.4 × 12.8 m3 and disretizedinto 32 × 32 × 64 ells onsists of an isotropi deviated water layer with ondutivity
σwater

xx = σwater
yy = σwater

zz = 5 S
m

(white olor in Fig. 5) and an anisotropi water-oilontat region (blak olor in Fig. 5) [σoil
xx = σoil

yy = 0.333 S
m
, σoil

zz = 0.05 S
m
℄ in a rokbakground (brown olor in Fig. 5) of ondutivity σr = 1.0 S

m
. Both transmitter andreeivers have the same loations of the previous example, but the operating frequeny isequal to f0 = 26.3 KHz.Figure 6 shows the behavior of the predited magneti �eld at the loations of the re-eivers. As expeted, whatever the approah, the �eld behavior is faithfully estimated.Consequently, the omputational e�etiveness turns out to be the index of suess amongthe di�erent solution tehniques.From the omputational point-of-view and with referene to Figures 7-9 and Table II,similar onlusions to those onerned with the �rst test ase hold true. However, despite9



the greater number of disretization ells and the on�guration omplexity, the onver-gene ratio is on average faster than that of the previous test ase (see Fig 7), but the
CPU-time per iteration inreases (Tab. II). Thanks to the non-negligible redution ofthe required iterations (Iconv) in omparison with those of the other tehniques, the totalamount of CPU-time required by the BiCGStab is omparable with that needed for the
GMRES method.As far as the R − GMRES solver is onerned, Ires has been �xed to Ires = 5. Thisis a smaller value than that in the �rst example, sine the amount of memory used periteration signi�antly grows. Consequently, the initialization time at eah restart has asigni�ant in�uene on the total CPU-time and therefore, the R − GMRES method isslower than its standard implementation.Finally, it should be observed that in suh an example the ratio between the omputationalosts of the fastest and the slowest algorithm signi�antly enlarges ( TCG

TGMRES
≃ 19 - TestCase 2 vs. TCG

TGMRES
≃ 8.3 - Test Case 1) beause of the slower onvergene of the CGmethod (ICG

conv = 1556 - Test Case 1 vs. ICG
conv = 110 - Test Case 2).4 ConlusionsIn this paper, a omparative assessment among iterative linear solvers when dealing withthree-dimensional inhomogeneous and anisotropi media has been arried out. As ex-peted, the numerial results on�rmed the e�etiveness of the onsidered approahesonerning the aurayin the eletromagneti predition. On the other hand, the nu-merial study showed that the GMRES method is the fastest solver even though theorresponding CPU-time per iteration linearly inreases. Moreover, the required amountof memory depends on the number of iterations for reahing onvergene in a propor-tional way. Consequently, the GMRES turns out to be a suitable tehnique only whena large amount of memory is available or when small-sale problems are dealt with. Onthe ontrary, the obtained results pointed out that it is pro�table to use the BiCGStabalgorithm when the omputational domain beomes larger and larger. As a matter of fat,suh an approah presented omparable or better performanes than the R − GMRES,but avoiding those drawbaks onerned with the memory requirements.10
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Figure Captions
• Figure 1. Test Case I - Real (a)()(e) and imaginary (b)(d)(f ) part of the x(a)(b), y ()(d), and z (e)(f ) omponents of the magneti �eld in the data domain

S.
• Figure 2. Test Case I - Normalized error ρi versus iteration number i.
• Figure 3. Test Case I - CPU-time per iteration (ti).
• Figure 4. Test Case I - Total CPU-time Ti versus iteration number i.
• Figure 5. Test Case II - Condutivity distribution of the water-oil ontat model.On the left hand side two orthogonal volume slies of the are shown. On the righthand side, 2D ondutivity distributions at y = 0 and x = −0.1 m. Multi-omponentdata are olleted along the vertial axis (i.e., z-axis) that oinides with the wellboreaxis.
• Figure 6. Test Case II - Real (a)()(e) and imaginary (b)(d)(f ) part of the x(a)(b), y ()(d), and z (e)(f ) omponents of the magneti �eld in the data domain

S.
• Figure 7. Test Case II - Normalized error ρi versus iteration number i.
• Figure 8. Test Case II - CPU-time per iteration (ti).
• Figure 9. Test Case II - Total CPU-time Ti versus iteration number i.
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Table Captions
• Table I. Test Case I - Computational indexes.
• Table II. Test Case II - Computational indexes.
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Method Iconv t0 [sec] ti [sec] T [sec]

R − GMRES 233 4.5 3.1 736

GMRES 136 4.8 4.0 545

QMR 172 6.9 6.7 1171

BiCGStab 106 4.8 6.2 659

BiCG 166 5.2 6.8 1133

CG 1556 4.9 6.7 10420

Tab. I - G. Franeshini et al., �A omparative assessment ...�24



Method Iconv t0 [sec] ti [sec] T [sec]

R − GMRES 31 15.4 7.4 245

GMRES 25 15.2 6.7 183

QMR 27 15.3 13.6 382

BiCGStab 15 15.3 13.0 210

BiCG 27 15.5 13.9 389

CG 110 15.5 13.7 1524

Tab. II - G. Franeshini et al., �A omparative assessment ...�25


