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ABSTRACT 
 
Edges are known to be a semantically rich representation of the contents of a digital image. 

Nevertheless, their use in practical applications is sometimes limited by computation and 

complexity constraints. In this paper, a new approach is presented that addresses the problem 

of matching visual objects in digital images by combining the concept of Edge Potential 

Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can 

be easily calculated starting from an edge map and provide a kind of attractive pattern for a 

matching contour, which is conveniently exploited by GAs. Several tests were performed in 

the framework of different image matching applications. The results achieved clearly outline 

the potential of the proposed method as compared to state of the art methodologies. 

 
 
1. Introduction 
 

The task of automatic matching of visual objects in digital images is a fundamental problem 

in pattern recognition. Applications span from industrial processes, where problems such as 

identification of mechanical parts or defective patterns are addressed, to robotics, where an 

autonomous system equipped with cameras and other sensors has to detect reference points or 

obstacles in the environment, to surveillance systems, where suspicious persons or objects in 

a scene have to be identified and tracked in order to alert the user in the presence of 

potentially dangerous situations. Depending on the application requirements, several possible 

approaches have been proposed in the literature to solve this problem. For a thorough survey 

on the matter, please refer to [1].  

Another important application that recently gained great interest within the multimedia 

community is connected to the problem of content-based image retrieval, which means the 

possibility of browsing pictorial data using the correspondence among their visual contents 

[2][3][4]. In this context, the problem of designing fast and reliable visual matching tools has 



 

a great importance, due to the possibility of defining advanced interfaces that allow a user 

searching images containing a given object by providing a sample of it or sketching the 

relevant shape by a graphical tool. On the other hand, this application is very demanding in 

terms of implementation constraints: in fact, browsing tools should be characterized by a 

nearly real-time response, low processing requirements (to be suited to low-capability 

terminals, such as PDAs), and high robustness, due to the fact that a user sketch is usually a 

rough representation of the searched object. This is the main reason why, although classical 

studies on visual perception and cognition showed that users are more interested to shapes 

rather than colors and textures [5][6], the use of the shape as a main feature is still quite 

limited. 

In [7] Borgefors pointed out that image matching methods can be loosely divided into three 

classes: (i) approaches making direct use of image pixel values; (ii) approaches based on low-

level features such as edges, corners or curves; (iii) techniques using high-level features, such 

as objects or relationship among features. The first class of methods is the less robust, due to 

changes in illumination, colors, scene composition, etc. Methods in the third class require the 

extraction of high-level features based on complex models, which often imply application-

dependent solutions. Methods belonging to the second class are currently the most popular. In 

the framework of feature-based approaches, numerous techniques have been proposed so far. 

According to a common classification 0[8], they can be subdivided into two major categories: 

techniques “by region” consider the whole object area, while techniques “by boundary”, 

focus only on object border. In either case, the matching is usually performed by detecting 

whether there is a geometrical transformation that makes a query and a target object 

correspond according to a pre-defined similarity criterion. The transformation could be 

rigid/affine or non-rigid/elastic. 

Boundary-based methods have been deeply investigated in the last two decades. They can be 

roughly subdivided into two classes: methods based on salient points and methods using the 

whole contour. As far as the first class is concerned, a rich body of theory and practice for the 

statistical analysis of shapes has been so far developed. In particular, the statistical theory of 

shapes [9] defines a framework for the representation and matching of shapes based on a 

finite number of “landmarks” points. Equivalences with respect to rotation, translation and 

scaling are established on these points, thus achieving the so-called “pre-shape”, which is the 

geometric information that remains after that location and scaling has been filtered out.  
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The pioneering studies by Kendall in the field were followed by many researchers, 

considering different scenarios and applications. Bookestein [10], Dryden and Mardia [11], 

Cootes et al. [13], Carne [14], and Small [15] developed the basic theory into practical 

statistical approaches for analyzing objects using probability distributions of shapes. From the 

viewpoint of applications, shape theory has been used to solve some problems in image 

analysis such as identifying landmarks of face images [12], or monitoring activities in a 

certain region from video data [16]. 

Major limitations of methods based on salient points can be summarized in the following 

points: (i) the automatic detection of landmarks, which totally influence on shape analysis, is 

not straightforward; (ii) shapes are usually considered closed curves, thus requiring an 

accurate pre-processing (filtering, edge detection); (iii) in shape matching, the process of 

defining the correspondences among salient points within the two shapes to be matched is a 

problem in itself, and requires a complex initialization (often done manually);. Some of these 

points are very difficult to solve, and have been subject of specific researches. Grenander [17] 

tried to avoid the effect of using landmarks by considering the shape as points in an infinite-

dimensional differentiable manifold: the variations between shapes are modeled by the action 

of Lie groups on this manifold. The central idea behind this approach is the deformable 

template theory. The major limitation of this approach is that the action of diffeomorphism 

group on R2 and R3 needs to be considered, thus implying a high computational cost. 

Srivastava et al [18] proposed to overcome those limitations by introducing a new framework 

in which two restrictions are removed: the need of determining landmarks a-priori and the 

necessity of a pre-shape. Nevertheless, as stated by the same authors, this framework is too 

bulky, making it non convenient in many applications as compared to simpler approaches 

such as principal component analysis or curvature scale-space [19]. 

In [20], Tsang proposed a method based on salient points in which a pair of binary shapes is 

matched under affine transformations condition, by relying on dominant points to determine 

the best alignment between object boundaries. He used a genetic algorithm to match a set of 

boundary points at the vertices of a polygonal approximation. The idea was further refined to 

take into account occlusion and deformation due to partial movement of objects. Scott and 

Longuet-Higgins suggested an algorithm that explicitly accounts for affine transforms 

between two sets of sample points [21]. The correspondences between the sets are recovered 

and used to calculate the affine transform which best maps one set onto the other. The affine 

transform is also the basis of the work of Xu et al. [22]. They are able to extract the object 

from partially occluded views, using shape matching and hierarchical content description. 
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Rotation and scaling are determined through a least-square estimation of the affine transform 

parameters, applied to a set of representative points along a B-spline approximation of the 

contours on both template and target images. The main limitation of the method lies in the 

constraint imposed to deal with occlusion, which requires all the representative points to form 

a continuous curve. This condition may become restrictive in the case of cluttered 

environment where the segments of continuous curves may be very short. 

In [23] a local search procedure is proposed that finds the best matching among line segments 

extracted from data and model. This concept is further extended by Kawaguchi et al [24], 

who combined line-based matching and genetic algorithms to locate a model in an image. In 

their method, a first trial solution is generated by partitioning the line segments into groups 

according to the relevant orientation and centroid, and successively refined by means of a 

genetic algorithm. In [25] this model is further improved to deal with occlusion, by 

introducing the concept of prominent boundary fragments, defined as sequences of visually 

significant contour points that are present on both reference and target objects. In this case, 

the fitness function for GA optimization is constructed as a similarity measure between 

model boundary fragment and data boundary fragment. The algorithm hypothesizes that both 

reference and target objects are first approximated by polygonal interpolations. 

Methods based on the use of the whole unlabeled edge points approach the problem in a 

different way. Among them, Chamfer Matching is one of the most popular algorithms [26]. It 

compares two sets of edge points belonging to an object model and to a target image, 

respectively. The best fit of the two sets is determined by minimizing a generalized distance 

between them [27]. Although Chamfer performs quite well, a good starting point is usually 

needed to avoid local minima. To overcome this problem, an improved algorithm is proposed 

in [7], which uses a multi-resolution strategy to overcome local-optimization problem. 

Furthermore, in [28] the same author proposes a very efficient method to calculate a distance 

transform, which gives the distance from any point x of set A to the nearest point in a set of 

source points B. Most of the current implementations of Chamfer technique make use of 

some combination of local distances to measure the global matching [7]. Among others, 

median, arithmetic mean, root mean square and maximum functions were proposed. 

Huttenlocher et al [29][30] addressed this problem by introducing the use of Hausdorff 

distance. This solution provides some advantages such as the insensitivity to small 

perturbations in the image, the simplicity, and the speed of computation. In [29], a variation 

of Hausdorff called partial distances is introduced, which uses ranking concepts to deal with 

occlusion problems. In [31][32][33], further improvements of Hausdorff distance-based 
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algorithm are proposed to take into account the direction of edges to overcome the early 

saturation caused by dense edge areas. For a thorough survey of Point Pattern Matching and 

Applications, please refer to [34].   

In this paper, a novel approach for detecting visual objects in digital images using edge maps 

is presented. The method is based on the innovative concept of Edge Potential Function 

(EPF) which is used to model the attraction generated by edge structures contained in an 

image over similar curves. Since the attraction field associated to the EPF is a complex and 

multi-modal function, the matching algorithm should exploit a suitable optimization strategy: 

in our experiments, the matching process was implemented by an optimized Genetic 

Algorithm (GA) specifically designed for the task. Experimental comparisons demonstrate 

that the proposed approach can provide significant advantages over traditional edge matching 

methods, in particular in cluttered and noisy environments, or in the presence of 

discontinuities and partial occlusions. 

The paper is organized as follows: in Sect. 2, the concept of EPFs is outlined and motivated, 

and the definition of Edge Potential and Windowed Edge Potential is introduced. In Sect. 3, 

the procedure for finding a shape inside a digital image using EPFs is described, making use 

of an optimisation approach based on genetic algorithms (GA). In Sect. 4, a set of selected 

test results is presented, showing the performance of the proposed approach in several 

different application conditions, and comparing it to other established approaches. Finally, in 

Sect. 5 the conclusions and future plans are drawn. 

 
2. The concept of EPF 
 

2.1 Motivation 

In the above discussion, several methods for the edge-based detection of visual object have 

been reviewed. A common characteristic of these methods is the use of point-to-point 

distances based on nearest-neighbors. It is clear that more complex models, including more 

sophisticated descriptions of edges, may improve the performance, at the cost of a larger 

computation. Several researchers attempted to exploit edge maps enriched with various 

sources of additional information. For instance, in [35] the author demonstrates that the 

gradient magnitude is the very important additional information to be associated to edge point 

positions in object recognition tasks. In [31][32] the orientation of edge points is used to 

overcome the erroneous matches due to dense edge areas caused by textures. Other 

characteristics such as edge smoothness, straightness and continuity were also used in the 
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context of image segmentation [36], while in [37] Ma et al demonstrated the effectiveness of 

a single edge flow field for boundary detection, by combining edge energies and the 

corresponding probabilities obtained from different image attributes. Furthermore, Olson [38] 

addressed the problem of grayscale template matching by taking into account the intensity 

variation of pixel in addition to the position parameter. 

The main novelty of the present work lies in the introduction of a model that allows to 

efficiently exploiting the joint effect of single edge points in complex structures, to achieve a 

better global matching. Such a model, called Edge Potential, is derived from the physics of 

electricity, and is particularly suited to build the desired model for it implicitly includes some 

important features such as edge position, strength and continuity, in a unique powerful 

representation of the edge map. The edge potential can be easily calculated starting from an 

edge map extracted from the image, and represents a sort of attraction field in analogy with 

the field generated by a charged element. 

The idea of applying the electrical potential to model different physical domains has been 

applied with success in other situations. As an example, in [39] an artificial potential field is 

used to drive a robot in a complex environment using the field generated by objects as 

attraction (target) and repulsion (obstacles) forces. In our approach, the model is tailored to 

the context of image matching, where it can be used to attract a template of the searched 

object or a sketch drawn by a user in the position where a similar shape is present in the 

image. In fact, the higher the similarity of the two shapes, the higher the total attraction 

engendered by the edge field. The advantage of such representation with respect to more 

traditional position-based models (e.g., distance transforms) will be also quantitatively 

demonstrated through examples and comparisons. 

 

2.2 Definition of EPF 

The basic concept of edge potential functions derives from the potential generated by charged 

particles. It is well known that a set of point charges Qi in a homogeneous background 

generates a potential, the intensity of which depends on the distance from the charges and on 

the electrical permittivity of the medium ε, namely: 

 ∑ −
=

i i

i

rr
Qrv rr

r

πε4
1)(  (1) 

where  are the observation point and charge locations, respectively. Eq. 1 shows the 

influence of point charges Qi on an observation charge and entails the presence of an oriented 

irandr rr
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vector representing the relevant electric field. The generated potential field will attract a test 

object with opposite charge to the field point where the differential potential is maximized. 

The electrical potential function described by Eq. 1 holds for both discrete and continuous 

distributions of charges [40]. 

In complete analogy with the above behavior, in our model, the i-th edge point in the image 

at coordinates (xi, yi) can be assumed to be equivalent to a point charge Qeq(xi, yi), 

contributing to the potential of all image pixels: 
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where εeq is a constant measuring the equivalent permittivity of image background, taking 

into account the extent of the attraction of each edge point. In other words, εeq influences the 

spread of the potential function making it more steep or smooth depending on its magnitude. 

This property will be very important to control the convergence of the matching process, as 

explained later. 

To complete the model, the object template to be matched with the edge map can be 

considered as a test object in the equivalent edge potential field generated by the image. 

Consequently, the template is expected to be attracted by a set of equivalent charged points 

that maximizes the potential along the edge. 

In the following, two alternative approaches (called binary and continuous EPFs, 

respectively) for the computation of the EPF are presented. Furthermore, a windowing 

procedure is proposed to speed up the EPF computation. 

 

2.3 Binary EPF (BEPF) 
As far as the binary approach is concerned, a simplifying assumption is made. All edge points 

are modeled as equal charges of value Qeq(xi, yi)=Q. Consequently, Eq. 2 reduces to: 
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The above definition of BEPF presents two problems: first, singularity points occur at edge 

pixel locations (xi, yi); and second, the maximum of the potential field depends on the 

equivalent permittivity. In order to avoid such drawbacks, BEPF is clipped and normalized. 

Figure 1b-d show the BEPF obtained from a simple binary shape (Figure 1a) for different 

values of the equivalent background permittivity  εeq. 
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Figure 1. BEPF obtained from a binary image: 

(a) original image; (b-d) potential function at εeq = 0.2, 0.05, 0.01, respectively; 

 

2.4 Continuous EPF (CEPF) 
Binary EPFs are well suited to binary images, where the edges can be considered simple 2D 

unit step functions. In the case of gray-level images, the intensity of edges is a source of 

additional information. In fact, the strength of an edge is usually considered a key parameter 

to discriminate the significance of a contour point. Then, in order to improve the 

effectiveness of the matching procedure, the intensity of the edge points is estimated during 

the edge extraction process by computing the local gradient magnitude, and is retained before 

binarizing the image. This leads to a variant of the EPF, called continuous EPF (CEPF), 

computed as follows: 

 
( )

( ) ( )
∑

−+−
=

i ii

ii

eq yyxx

yxEyxCEPF
22

,
4

1),(
πε

 (4) 

where E(xi, yi) is the intensity of the i-th edge point. 

It is to be observed that in this case, the intensity of the edge is directly resembled to the 

charge of the point Qi in the physical model, meaning that a stronger contour attracts to a 

(d) (c) 

(b) (a) 

 8



 

higher extent a test object. Figure 2c-f show a comparison between BEPF and CEPF 

calculated from the edge map in Figure 2b extracted from a grey-level image (Figure 2a) for 

different values of the equivalent background permittivity εeq. 

 

 

 

 
(f) 

(d) 

(a) (b) 

(c) 

(e) 

Figure 2. CEPF obtained from a gray-level image: 
(a) original image (256 grey-level); (b) edge map extracted from (a); 

(c-d) binary potential function at εeq = 0.2, 0.01, respectively; 
(e-f) continuous potential function at εeq = 0.2, 0.01, respectively. 

 

2.5 Windowed EPF (WEPF) 
A major problem common to most edge matching techniques is connected to the presence of 

clutter and areas with high density of edges, which can lead to a significant rate of false 
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alarms [31][32]. Multi-resolution approaches have been largely adopted as a strategy to 

improve both speed and robustness of shape-matching in cluttered environments, as well as to 

manage partial occlusions and complex transformation parameters. Borgefors [7] proposed to 

embed a Chamfer matching algorithm into a hierarchical procedure based on a multi-

resolution pyramid, to cope with the high number of geometrical transformation parameters 

requested by the matching procedure. The pyramid is constructed by decreasing at each step 

the resolution by a factor 4:1 to create the coarser level: the process is iterated until only one 

pixel is left. Oller et al [41] addressed a similar problem in the edge-based matching of SAR 

images, where the presence of noise and high-frequency textures makes the problem quite 

troublesome. In this case the solution consisted in using a variable-size windowing procedure 

to control the number of pixels in the certain area and reduce the effect of dense edge areas. 

As far as EPF is concerned, the potential function at each pixel is in principle affected by all 

the edge points present in the image (see Eq. 3 and 4), although the influence of an edge point 

rapidly decreases with the distance. Therefore, equivalently to distance transforms EPF may 

suffer the presence of areas with high edge activity, which locally increase the average 

potential. CEPF is less sensitive to this problem, for it weights the effect of edges 

proportionally to their intensity, but may have problems in high contrast areas such as small 

details or noise. 

The solutions to this problem range from the use of sub-sampling and pyramidal approaches, 

to the use of pre-filtering and/or post-processing tools able to reduce the local edge activity 

connected to noise and textures, to the introduction of EPF calculation schemes able to limit 

the impact of dense edge areas on the potential field. In this section, we consider this last 

approach, achieved through a windowing procedure. Windowed EPF (WEPF) simply consists 

in defining a window W(εeq) beyond which edge points are ignored. The window is centred 

on each image point for which the potential is to be computed, and defines the area within 

which surrounding edge points have to be considered. A suitable definition of the window 

size should allow reducing the impact of noise, without altering the concept and effectiveness 

of EPF. To achieve this result, it is important to consider two aspects: (i) since the windowing 

procedure results in an approximation of the field, it is desirable that the achieved function is 

similar to the actual one; (ii) the necessity of reducing the impact of locally dense edge areas 

on the potential function requires a limitation of the radius of influence relevant to a charged 

element (a sort of interdiction zone). Remembering that the effect of a charged element on the 

potential of a given point is in inversely proportional to the distance of the charge itself, we 
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can conclude that there is a value of the distance (depending also on εeq) after which the 

effect of a single charge on the overall potential becomes negligible. The fact of ignoring 

those charges has a very limited impact on the actual sketch, which is usually a well-defined 

and linear contour, but can be much more significant in clutter, due to the superposition of 

effects. 

The graph in Figure 3 plots the window size vs. equivalent permittivity, for different 

percentages of the maximum allowed potential loss for a single charged element (20, 10, 5 

percent potential loss, respectively). For instance, if the window size is set according to the 

lower curve (plotted in red colour), the edge points that contribute to the point potential for 

less than 20% of their equivalent charge are ignored. In this situation, taking into account that 

typical values for the equivalent permittivity are in the range [0.02÷0.2], reasonable values 

for the window size are in the range [6÷15] pixels. Given a constant permittivity, larger 

losses lead to smaller windows. It has been experimentally proven that a loss of 5% to 10% 

(i.e., ignoring the edgels that will contribute less than 5-10% of their charge) does not affect 

at all the precision of the matching, while ensuring a lower computation. This means moving 

in between the two lower curves in Figure 3. 

 
Figure 3. Window size vs. equivalent permittivity in windowed EPF computation. 

 

It is important to notice that windowing has a positive effect also on the computational 

complexity. In fact, the computation of the complete potential field will require for each 

image point a number of floating point operations proportional to the number of edge pixels 
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present in the image. With WEPF this number becomes proportional to W(εeq), which makes 

the method viable also for on-line application. 

Figure 4 shows the difference between the binary potential function computed using Eq. 3 

and one obtained with windowing: it is to be observed that the windowed BEPF is 

characterized by a larger response near to the contour points and a steeper transition region. 

Similar results apply to windowed CEPFs. 

 

(a) (b) 

 

Figure 4. Result of approximated computation of BEPF using windows: 
(a) application to the same image of Fig. 1.a; 

(b) difference with exact BEPF (Fig. 1.b) 

 

2.6 EPF-based Similarity Measure 

In previous sections, the concept of edge potential function has been defined, as well as some 

algorithms for its computation. In this section, the application of EPF to shape matching is 

considered. To this purpose, we define a binary image containing a single shape to be used as 

a model (sketch image) and a test image in which the model has to be matched (target 

image). 

The first step consists in filtering the target image in order to extract a suitable edge map. 

Although the optimization of such operation is out the scope of our work, it is important that 

the extracted edges represent in a robust way the objects present in the scene, irrespectively 

of the presence of noise and textures. To this purpose, the Canny-Rothwell edge extractor 

was applied. The EPF of the target image is then calculated. BEPF just requires the edge 

map, while CEPF uses also the gradient values achieved by the Canny-Rothwell algorithm. 

The objective of the following process is to determine if the target image contains an object 

whose shape is similar to the sketch for a given position, rotation and scaling factor. This can 

be restated as the problem of finding the set of geometrical transformations that maximize the 
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overlapping between sketch and target, according to a given similarity measure. To this end, 

the following geometrical operators are taken into account: 

 a rotation, θ ; 

 a translation (along the horizontal, xt , and vertical, yt , directions, respectively); 

 a scaling (along the horizontal, wt , and vertical, ht , directions, respectively). 

Horizontal and vertical scaling factors can be constrained to be equal ( ) to keep 

the aspect ratio constant, thus avoiding deformations. By considering these operators 

shw ttt ==

( )syx tttc ,,, θ= , the original sketch is iteratively roto-translated and scaled obtaining different 

instances of it, which are fitted within the potential field to compute a matching index. The 

goal is to find the combination of parameters that provides the best fit, and to evaluate if the 

relevant matching index is high enough to determine with a certain degree of confidence the 

presence of the model in the target image. As far as the definition of a suitable similarity 

measure is concerned, the following matching function was defined, namely EPF energy, 

based on the potential field: 

 ( ) {∑
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)( kcn  being the n-th pixel of the ck-th instance of the sketch contour, of length  pels.  )( kcN

f(ck) is therefore the average value of the EPF computed on the target image, calculated along 

a curve defined by the current instance of the sketch, and defines the average “attractive 

energy” generated by the target image upon the roto-translated and scaled version of the 

sketch. Accordingly, the optimal matching is obtained when the matching function is 

maximized, i.e., when the set of transformations is found that provides the maximum average 

potential along the contour  among all possible transformations. optc

It is to be pointed out that Eq. 5 does not define a distance function, but rather an average 

attraction function generated by the edge potential over the model. In other words, in the EP 

space, point-to-point distances are not measured, but the total (average) attraction energy 

generated by the target over the model for a given roto-translation and scaling is computed, 

and the configuration which provides the maximum energy is searched for. 

Figure 5 provides a graphical interpretation of the matching process, where the sketch shape 

is superimposed to the target EPF. The matching function is simply computed by averaging 

the EPF values at the positions pointed by the sketch pixels. 
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Figure 5. Computation of the EPF energy 

 

 

3. EPF and Genetic Algorithms 
 
3.1 Search Strategy and Genetic Algorithms 

In section 2, a similarity measure is defined using the concept of Edge Potential. A matching 

procedure is also outlined consisting in the search of the roto-translation and scaling of the 

model that maximizes the EPF energy. In this section, the problem of defining a suitable 

search strategy is addressed. Essentially, the retrieval of the optimal relative position between 

the sketch and the target is a global optimization problem, where a fitness function should be 

maximized with respect to a set of parameters that define a geometrical transformation. More 

specifically, the fitness function proposed in (5) defines a nonlinear multidimensional 

function, usually characterized by several local maxima. Therefore, the searching strategy 

should find the global maximum, and avoid remaining trapped in local extremes. Two 

problems need to be coped with: (i) the large search space and (ii) false matches 

corresponding to local maxima of the fitness.  

Brute-force approaches based on searching all the possible combinations of parameters would 

lead to unacceptably long processing times, thus being not feasible in practice. On the other 

side, fast techniques such as gradient descent do not guarantee a good solution, due to the 

large number of local extremes. Evolutionary approaches are proven to be useful in these 

situations. Among them, Genetic Algorithms (GAs) are searching processes modelled on the 

concepts of natural selection and genetics. Their basic principles were first introduced by 

Holland in 1975 [42] and extended to functional optimization by De Jong [43] and Goldberg 

[44]. GA is an iterative process in which sets of trial solutions evolve according to pre-

defined rules. First, a population of individuals is created randomly, where the population 

stands for a set of trial solutions, and the individual can be thought of as a candidate solution 
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and is encoded by a chromosome. The selection is the process by which a new population is 

created by making copies of more successful individuals and deleting less successful ones. 

Throughout this process, crossover and mutation operators are applied with suitable 

probabilities, to achieve the diversity of individuals. A fitness value is associated to each 

individual representing a measure of the solution goodness. The process is stopped whenever 

an individual is found with the requested fitness, or individuals converge to a stable value. 

GAs have been recently employed with success in a variety of engineering applications 

[45][46][47], and in particular in pattern recognition where complex search processes are 

addressed [48][49][50]. Tsang et al [20] has conducted a thorough research on the use of GAs 

for object matching under affine invariant transformation condition. Also Kawaguchi et al. 

exploited the potential of Gas to extract partially occluded objects from a scene, 

simultaneously detecting rotation, scaling and translation [24][25]. From all of those studies it 

is clear the one of the most attractive features of GAs is their capability to solve problems 

involving non-differentiable functions and discrete as well as continuous spaces. Although, 

these qualities are shared by other multiple-agent procedure techniques, GAs also exhibits an 

intrinsic parallelism.  

In the following section, the use of GAs in combination with EPF is proposed to solve the 

problem of edge-based visual object detection in digital images. 

 

3.2 Binary GA-based Matching Procedure 

The key items in designing a GA-based inversion procedure are: 

• the representation of the solution, cc ~⇒ ; 

• the design of evolutionary operators responsible for the generation of the trial solution 

succession, { }Kkck ,...,1, = ; 

• the evolutionary procedure. 

Different choices result in appropriate procedures able to efficiently deal with different 

problems. As far as the edge-based detection of visual objects is concerned, a customized 

binary version of the algorithm has been considered to reduce the computational burden. The 

objective is to maximize the fitness function (defined in (5)) by finding the optimal set of 

geometrical transformation parameters, appropriately encoded in the chromosome. To this 

purpose, a randomly generated population of trial solutions is defined: 

{ }PpcP p ,...,1;)(
00 ==  (6) 
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where P is the dimension of the population. Iteratively (being k the iteration number), the 

solutions are ranked according to their fitness value 

( ){ } KkPpcfF p
kk ,...,0,...,1;)( ===  (7) 

and, according to the classical binary-coded version of the GA [47], coded in strings of 

 bits, Li being the number of quantization levels used for the i-th of the 4 

unknowns, 

{∑
=

=
parN

i
iLN

1
2log }

( )syx ttt ,,, θ : 

{ } KkPpc p
kk ,...,0,...,1;~ )( ===Γ  (8) 

Then, new populations of trial solutions are iteratively obtained by applying the genetic 

operators (selection, crossover and mutation) according to a steady-state strategy [46]. At 

each iteration, a mating pool is chosen by means of a tournament selection procedure 

{ }kk Γ=Γ δδ )(  (9) 

where δ  indicates the selection operator. The new population is generated by applying in a 

probabilistic way the two-point binary crossover, ξ , and the standard binary mutation, ς  

{ } { })()()()(

)()(1

SkkSkk

kkk

Γ=ΓΓ=Γ

Γ∪Γ=Γ +

ςξ ςξ

ςξ  
(10) 

The genetic operators are iteratively applied corresponding to their probabilities. Crossover is 

applied with a probability , mutation is carried out with a probability , and the rest of the 

individuals are reproduced. The iterative generation process stops when the stationary 

condition is reached 

cP mP

conv

I

i
ikk

p
I

ff
<

−∑
=

−
1

**

 

(11) 

where ( ){ })(

,...,1
,..,1

* max p
h

kh
Ppk cff

=
=

= , I is a fixed number of iterations, and  is the 

convergence threshold. 

[ 1,0∈convp ]

 

3.3 Chromosome Encoding 

As previously specified, the generic solution ( )syx tttc ,,, θ=  associated to a geometrical 

transformation is encoded in a chromosome, as follows: 
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( )GA
s

GAGA
ty

GA
tx gggg ,,, γ  (12) 

where  represent the genes of x-translation, y- translation, rotation, 

and scaling, respectively. Each gene is coded as a binary string, and must satisfy following 

conditions: 

GA
s

GAGA
ty

GA
tx gandggg ,,, γ

⎥⎥
⎤

⎢⎢
⎡≤≤
α
wg GA

tx0
, 

⎥⎥
⎤

⎢⎢
⎡≤≤
α
hg GA

ty0 , 

⎥
⎥

⎤
⎢
⎢

⎡ −
≤≤

β
minmax0 RRgGA

s
, 

⎥
⎥

⎤
⎢
⎢

⎡ −
≤≤

γ
minmax0 SSgGA

s
 

(13) 

where α , β  and γ  are the relevant steps for discrete translation, rotation, and scaling; w, h, 

, , , and  are the width and height of the target image, the lowest and highest 

rotation angles and the lowest and highest scaling bounds, respectively. 

minR maxR minS maxS

Consequently, the total number of bits of the chromosome turns out to be: 

⎥
⎥

⎤
⎢
⎢

⎡ −
+⎥

⎥

⎤
⎢
⎢

⎡ −
+⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡=

γβαα
minmax

2
minmax

222 loglogloglog
SSRRhwN  

(14) 

 

4. Experimental Results 

The proposed technique has been extensively tested in several experimental configurations 

and different data sets. In this section we summarize the results of this analysis, focusing on 

three aspects: (i) to assess the potential of EPF as a similarity measure in itself; (ii) to 

evaluate the performance of EPF-based matching methods using GAs as a searching strategy; 

(iii) to assess the performance of EPF-based matching in extremely critical situations, where 

the analyzed data are affected by serious noise and clutter conditions. These aspects are 

subsequently treated in the following three sections. For all the presented test cases, a 

comparison with highly optimized implementations of competing edge-based matching 

techniques is proposed. 

 
4.1. Assessment of EPF-based similarity measures 
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In order to comparatively assess the effectiveness of the proposed approach with respect to 

competing state-of-art techniques, three representative examples are analyzed. The first refers 

to a synthetic image without noise, but containing several objects with similar shape. The 

second is a much more complex and cluttered image with high density of contours. The last 

one is a natural color image characterized by complex and repetitive shapes with weak edges. 

As far as the compared techniques are concerned, they are denoted as follows: 

• CM: Chamfer Matching  

• HD: Hausdorff Distance 

• WEPF: Windowed EPF (window size = 32 pels, permittivity ε  = 0.02) 

Since we are interested in comparing the similarity measures unaffected by the matching 

procedure, in these examples a full-search strategy has been applied, by computing the 

similarity index of the three methods for every possible parameters configuration. The 

following TABLE 1 provides the variation range of each parameter. 

 
TABLE 1. RANGE OF PARAMETERS FOR FULL SEARCH PROCEDURE 

 

Transform operator Range Step 
Translation X [0, w=image width] α = 2  
Translation Y [0, w=image height] α = 2 
Rotation Rmin=1, Rmax=360 β = 3 
Scaling Smin=0.7, Smax=1.3 γ = 0.1 

 

The number of quantization levels has a direct impact on the accuracy of the matching. For 

instance, if the translation step is set to 5 pixels, a maximum displacement of 2 pixels is 

expected. This condition limits a lot the choice of quantization steps. Moreover, the precision 

on translation has to be correlated to the precision on scaling and rotation. As a matter of fact, 

it would be useless to have a maximum error of 1 pixel in translation and a maximum error of 

5 or more pixels due to the rotation or translation (this also depends on the size of the object). 

In this sense, the parameters defined in TABLE 1 were carefully selected, also taking into 

account the resolution of images and size of searched objects. 

In Figure 6a-b the first image and the relevant query are shown. 

    
                                                       (a)                                              (b) 
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Figure 6.  A synthetic test image 
(a) Target image, (b) Query image  

 

In Figure 7 the histogram of the similarity values calculated with the three techniques are 

reported. As it can be observed, the EPF-based similarity is the only one that shows a sharp 

decrease of the number of samples in correspondence with the larger fitness values. In 

particular, only for windowed EPF the maximum fitness (equal to 1) is associated to the 

optimal solution only (i.e., the perfect overlapping between the query and the target image). 

 

  

(a) (b) 

 

(c) 

Figure 7. Histogram of the similarity values relevant to the image in Figure 6: 
(a) HD, (b) CM, and (c) WEPF 

 

In  
Figure 8 and Figure 10 the other two examples are depicted. In both cases, the edge map is 

extracted from the greyscale/colour image by a Canny-Rothwell edge detector with σ = 1.5. 

The relevant similarity histograms are proposed in Figure 9 and Figure 11, respectively, using 

the same sets of parameters. The behavior is clearly analogous to the one previously 

discussed. 
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(a) (b) 
 

      
 

      (c)                           (d) 
 

Figure 8. A greyscale test image showing several hand-draw objects 
(a) Original image (b) relevant edge map (c) query image extracted from the test image (d) 

query image drawn by user. 
 

  

(a) (b) 

 

(c) 
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Figure 9. Histogram of the similarity values relevant to the image in  
Figure 8: 

(a) HD, (b) CM, and (c) WEPF 
 

     
                                    (a)                                            (b)                                  (c) 

 
Figure 10. Colour test image 

(a) Original image (b) relevant edge image (c) query image 
 

  

(a) (b) 

 

(c) 

Figure 11. Histogram of the similarity values relevant to the image in Figure 10: 
(a) HD, (b) CM, and (c) WEPF 

 
The curves in Fig. 7, 9, 11 demonstrate that the proposed algorithm generates a lower number 

of “highest-score” points. This is a positive feature, provided that these points correspond to 

the correct positioning of the object. On the other hand, HD and CM tend to have a large 
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number of positions with very high score. This behavior of HD and CM is not necessarily 

negative, provided that the relevant positions are concentrated in the correct position. It is 

then necessary to study the distribution of the peaks of the fitness function in the different 

cases. The following Figs. 12, 13 show the behavior of the fitness function for the three 

methods along all the possible x,y translations, keeping constant rotation and scaling. It is 

possible to observe that with EPF the points with higher scores form a slope around the 

solution, with a unique peak, while the numerous “high-match” points achieved by the other 

two methods are in fact spread over the image and not concentrated near the correct solution. 

This fact demonstrates that EPF eases the optimization process, making it possible to detect 

the correct matching. 

 

 
(a) 

 
(b) 
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(c) 

Figure 12. 3D surface of the similarity values relevant to the image in Figure 6: 
(a) HD, (b) CM, and (c) WEPF 

 

 
(a) 

 
(b) 
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(c) 

Figure 13. 3D surface of the similarity values relevant to the image in Figure 10: 
(a) HD, (b) CM, and (c) WEPF 

 
 
4.2. Edge matching procedure using EPF and GAs 
 
In this section, EPF is compared with other methods in terms of matching capabilities. In 

order to avoid the dependence of the result on the searching strategy, the same optimized GA 

searching procedure has been applied. In Figure 14, the dialog box specifying the GA 

parameters is shown. 

It should be noted that the position of the sketch in the model image has no effect at all on the 

matching procedure. In fact, the initial population is randomly generated applying casual 

roto-translation and scaling to that shape. Then, the probability of having the exact instance 

of the model which corresponds to the target object in the initial population is exactly the 

same of any other transformation. 

The following Figure 15-16 depict, for each of the three selected test cases described in Sect. 

4.1, the behavior of the fitness function during the iterative process, and the best matching 

achieved at convergence. 
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Figure 14. GA parameters setting 
 

 

 

 

 

(a) (b) 

 25



 

 

 

 

(c) (d) 

 

 

 

(e) (f) 

 
Figure 15. Result of matching on the image in Figure 6. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 

  

 

 

(a) (b) 
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(c) (d) 

 

 

 

(e) (f) 

 
Figure 16. Result of matching on the image in  

Figure 8 with the query is  
Figure 8c. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 
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(a) (b) 

 

 

(c) (d) 

 

 

 

(e) (f) 

Figure 17. Result of matching on the image in  
Figure 8 with the query is  

Figure 8d. 
Left column: behaviour of the fitness function; Right column: best matching. 

First row: HD, Second row: CM, Third row: WEPF 
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(a) (b) 

 

 

 

(c) (d) 

 

 

 

(e) (f) 

 
Figure 18. Result of matching on the image in Figure 10. 

Left column: behaviour of the fitness function; Right column: best matching. 
First row: HD, Second row: CM, Third row: WEPF 

 
Looking at the matching results, it can be observed that WEPF performance is extremely 

satisfactory, for the correct shape is located in all examples. In the first test, HD and CM 

converge to a local maximum in correspondence with a similar shape in the bottom-left of the 

image. Also WEPF does not achieve a perfect matching, although it converges to the right 

object location. In the other two examples, WEPF achieves almost perfect matching, while 

other approaches are attracted by high-density edge areas, thus not converging to a reasonable 

solution. 

It should be noted that EPF tends to give lower fitness values as compared to other 

techniques. This is evident looking at the 3D charts of the potential (Figure 1), which show 

how the potential decreases quite rapidly. Nevertheless, this is not a negative characteristic of 
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the method. In fact, what is really important here is the relative value of the fitness and not 

the absolute one. As seen in above examples, HD or CM can produce a wrong solution with a 

high fitness, then, the result may be not reliable even if the score is very high. On the other 

side, EPF provides the correct position, associated to the highest score, even if the relevant 

absolute value may not be close to 1 due to imperfect overlapping with the model (e.g., due to 

quantization step or differences between model and target). 

Fig. 17 shows the result achieved by applying the human-drawn query of Fig. 8.d. In that 

case, the model is similar but not identical to the target. The test demonstrates that also in this 

situation EPF achieves a very good matching. 

The last example of this section deals with a possible application to image indexing and 

retrieval based on visual object matching. In this case, we imagine that a user can browse an 

image database by sketching a shape on a simple graphical interface. The relevant contours 

are then matched with the images in the database, in order to detect similar objects. In the 

proposed example, the database was made up of more than 400 color pictures of monuments, 

town views, landscapes and other subjects. 

In Figure 19a a sketch query is represented, while in Figure 19b, the precision-recall curve 

achieved by the EPF-based indexing is compared to those of HD and CM. Precision-recall 

curve is a very common measure to evaluate the performance of a information retrieval 

process. Assuming that:  

- RET = set of all images the system has retrieved for a specific query;  

- REL = set of relevant images in the database for the query; 

- RETREL = set of the relevant images retrieved by the algorithm; 

then, precision and recall measures are obtained as follows:  

- precision = RETREL / RET  

- recall = RETREL / REL 

For the sake of completeness, Fig. 16c reports the set of most relevant samples extracted from 

the database with the proposed approach. In each image, the best match is superimposed in 

white. It can be observed that the achieved ranking is very good. As an example, let us 

consider that the subset of Eiffel tower images is composed of 19 images, which are 

successfully retrieved among the first 26 ranked samples. 
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(a) (b) 

 

(c) 

 
Figure 19. Use of WEPF for image indexing and retrieval. 

(a) a user sketch used for query; (b) comparative precision-recall diagram; 
(c) retrieval result. 

 

4.3. Visual object matching in the presence of noise and clutter 
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One of the key advantages of EPF-based matching is the capability of making coherent 

contours prevail over noise spots. In order to experimentally assess this feature of the 

proposed method, a further set of tests is presented in this section, in which the matching is 

performed in extremely critical noise conditions. The first test case refers to the “flowers” 

image (Figure 10a). It consists in performing the matching in the presence of a high-power 

additive Gaussian noise. The noisy image and the relevant query are presented in Figure 20a-

b, while Figure 20c depicts the edge map extracted by the Canny-Rothwell algorithm, 

showing a strongly damaged edge map (contours fragmentation, noise spots). In Figure 20d-f 

the results of the matching are presented, again comparing the proposed methods with the 

optimized HD and CM techniques. As expected, the accuracy of WEPF in locating the right 

shape turns out to be slightly reduced (see Figure 20f vs. Figure 18f). Nevertheless, it should 

be noticed that WEPF definitely outperforms other methods. 

 

  

 

 

 

(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 20. Matching results in the presence of high-power Gaussian noise: 
(a) noisy target image, (b) relevant edge map, (c) query, 

(d) HD, (e) CM, (f) WEPF 
 

In the second test case, a high-frequency texture is added to the same “flowers” image 

(Figure 10a). The texture strongly distorts the image, thus producing a cluttered edge map 
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(Figure 21c). In Figure 21d-f the results of the matching of the query (Figure 21b) are 

presented, again comparing the proposed methods with the optimized HD and CM 

techniques. Also in this case, WEPF is the only method to achieve a correct matching. 

 

  

 

 

 

(a) (b) (c) 

   

(d) (e) (f) 

 
Figure 21. Matching results in the presence of texture noise: 

(a) noisy target image, (b) relevant edge map, (c) query, 
(d) HD, (e) CM, (f) WEPF 

 

Finally, the third example concerns the detection of a simple triangular object. Here, the main 

difficult is in the fact that the target shape is strongly fragmented (a dashed line) and it is 

immersed in a high-frequency texture. The test image and the query are shown in Figure 22a-

b, while the matching results for the three competing techniques are depicted in Figure 22c-e. 

Again, it is possible to observe that only the EPF-based approach converges to the correct 

solution, while HD and CM are mislead by the highly dense edge map generated by the 

background texture. 
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(a) (b) 

 

(c) (d) (e) 

 
Figure 22. Matching results in the presence of high-frequency background texture: 

(a) target image, (b) query,(c) HD, (d) CM, (e) WEPF 
 

The interpretation of these last results is that in most complex situations, where edges are 

weak and noise or textures tend to prevail, it is very important the property of EPF of 

exploiting the superposition of effects between edge points along the target curve, so that 

coherent structures acquire a greater weight in the fitness function. 

 
4.3. Algorithm convergence and complexity issues 
 
Studies have been carried out in order to ascertain the convergence properties of the proposed 

algorithm and its computational complexity. As far as the verification of the convergence of 

the GA is concerned, due to the stochastic nature of the algorithm the figures reported 

throughout the paper refer to average values achieved by multiple runs of the algorithm (10 

executions for each test, with randomly generated initial populations). 

In order to show the steadiness of the algorithm,  in Table 3 we report the complete test set 

for the example of Fig. 17. Each row shows the result of the run in terms of best fitness and 

resulting affine transform parameter set. 

 

TABLE 2. STATISTICAL REPORT OF EXAMPLE IN FIGURE 17 

Bold rows denote the best match under human perspective 

 Times Fitness at 

convergence 

( )θ,,, stt yx  
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1 0.895831 (53, 53, 1, 0) 

2 0.906262 (52, 54, 1, 0) 

3 0.890051 (49, 62, 1, 6) 

4 0.884643 (51, 56, 1, 3) 

5 0.869046 (61, 53, 0.9, 0) 

6 0.895985 (52, 55, 1, 0) 

7 0.878611 (49, 49, 1, 6) 

8 0.903584 (50, 58, 1, 3) 

9 0.894045 (59, 53, 1, 356) 

WEPF 

10 0.87052 (51, 62, 0.9, 3) 

    

1 0.994031 (108, 60, 0.9, 303) 

2 0.994437 (133, 73, 0.9, 273)  

3 0.995021 (134, 104, 0.9, 263) 

4 0.995937 (134, 98, 0.9, 267) 

5 0.995496 (114, 127, 0.9, 189)  

6 0.994713 (47, 101, 0.9, 65) 

7 0.993689 (55, 45,  0.9, 353)  

8 0.995937 (134, 98, 0.9, 267)  

9 0.994646  (53, 107, 0.9, 75) 

CM 

10 0.994377  (154, 88, 0.9, 189) 

7    

1 0.995928  (134, 98, 0.9, 267) 

2 0.994132  (61, 55, 0.9, 6) 

3 0.994389  (195, 72, 0.9, 276) 

4 0.993919  (48, 39, 0.9, 6) 

5 0.994667  (117, 125, 0.9, 192)  

6 0.994192  (60, 68, 0.9, 12) 

7 0.995737  (133, 96, 0.9, 270) 

8 0.995508  (135, 98, 0.9, 267) 

9 0.994121  (125, 82, 0.9, 281)  

HD 

10 0.994132  (155, 92, 0.9, 189) 
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It is possible to observe that in EPF the best match between the query and the target image 

under human perspective has the highest fitness at convergence. On the contrary, for CM and 

HD the best match under human perspective does not correspond to the highest fitness. This 

demonstrates that EPF works well in complex environments, where CM and HD tend to 

remain trapped in local maxima. 

As far as the computational complexity is concerned, it is to be pointed out that the proposed 

approach implies a higher cost for the calculation of the potential function, while it is 

characterized by an almost equivalent cost for the computation of the fitness function, used in 

the optimization process. This drawback turns out to be acceptable in many applications (e.g., 

image indexing and retrieval applications), where the computation of the EPF can be 

performed off-line and stored for each target image, thus not affecting the matching time. In 

the case of on-line computation of the EPF, the overall matching time slightly increases. The 

following TABLE 3 indicates the CPU time relevant to the above examples when different 

methodologies are used. The reported times (in seconds) refer to the execution of the code on 

PC equipped with a P4 processor at 2.6GHz. It can be noticed that the computation of the 

EPF matrix is higher as compared to nearest-neighbor-based approaches, while GAs 

convergence requires similar CPU time. Moreover, the computation of the EPF is strongly 

dependent on the complexity of the edge image (since the number of “equivalent charges” to 

be considered increases with the edge density), and of course it benefits of the windowing 

procedure. 

 
TABLE 3.  COMPARISON IN TERMS OF COMPUTATION TIME (IN SECONDS) 

Bottle 
(216 x 146) 

Flower 
(144 x 160) 

Synthetic 
(114 x 96) 

 

Time to 

run GA 

Time to 

compute 

EP/CF 

Time to 

run GA 

Time to 

compute 

EP/CF 

Time to 

run GA 

Time to 

compute 

EP/CF 

EPF 5.047 13.609 2.469 2.968 2.984 0.719 

WEPF 32 5.031 11.75 2.485 2.968 2.984 0.703 

WEPF 16 5.069 10.03 2.481 2.468 2.75 0.578 

CM 5.187 0.453 2.468 0.281 2.891 0.156 

HD 5.375 0.453 2.5 0.281 2.984 0.156 
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A further note concerns the dependence of the GA convergence on the number of 

quantization levels used in the encoding of the parameters. This is a not trivial task, since the 

best performance of the optimizer occurs when a good trade-off between exploration of the 

searching space and exploitation of the best features of trial solutions is achieved. As a matter 

of fact, a coarse quantization does not require large populations, but it does not allow 

achieving a satisfactory matching, due to the granularity of the geometrical transformations. 

On the other hand, a finer quantization can achieve a closer matching, while significantly 

enlarging the solution space, thus requiring a larger population in order to converge in a 

reduced number of iterations. 

 
5. Conclusions 
 
A new approach to the problem of edge-based visual object matching in digital images was 

presented, based on the concept of Edge Potential Function (EPF) and the use of a GA-based 

optimization. The potential function is calculated starting from the edge map of the image, 

and it is used as an attraction pattern in order to find the best possible match with a template 

or hand-drawn sketch. 

Different possible approaches to the computation of the EPF were suggested, including 

binary and continuous functions, as well as windowed procedures. The new approach was 

extensively tested on both synthetic and photographic pictures, showing very good 

performance in comparison with state-of-the-art methods. It is worth noting that, thanks to 

the capability of exploiting the joint effect of continuous charges aligned over coherent 

structures, EPF matching demonstrated a reliable performance also in the presence of high-

power noise and clutter. Furthermore, it is effective also when the sketch does not fit exactly 

the target image, thus allowing the development of effective and robust tools in the 

framework of content-based image retrieval applications. 

Future developments will take into consideration additional features of the potential field not 

exploited in the present implementation, such as the direction and continuity information. 
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