

UNIVERSITY OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14 http://www.disi.unitn.it

STUDIO PRELIMINARE SINTESI SISTEMI RADIANTI PER RBS – PROGETTAZIONE DI ARRAY DUAL BAND E SIMULAZIONE CON PIANO DI MASSA INFINITO

A. Massa, and ElediaLab

August 2008

Technical Report # DISI-08-070

ELEctromagnetic DIAgnostics Lab. Information and Communication Technology Dept. University of Trento Via Sommarive 14, 38050 Trento, ITALY Phone +39 0461 882057 Fax +39 0461 882093 E-mail: <u>andrea.massa@ing.unitn.it</u>

DIT-PRJ-08-037

Studio Preliminare Sintesi Sistemi Radianti per RBS

Report N. 02-04

"Progettazione di array Dual Band e simulazione con piano di massa infinito"

Authors	ELEDIA Group
Version	3.0
Document State	Final
Access	Confidential
Date	October 22, 2008 (22-10-08)
Page number	8

Indice

1	1 Simulazione di array ideale non equispaziato con elementi ideali per RBS				
2	2 Test case	3			
	2.1 Test case 1	. 3			
	2.2 Test case 2	. 5			
	2.3 Test case 3	. 7			

1 Simulazione di array ideale non equispaziato con elementi ideali per RBS

In questa fase di progetto si sono considerate le seguenti ipotesi

- elementi radianti puntiformi ideali
- $\bullet\,$ utilizzo di 12 elementi radianti
- utilizzo di un piano di massa infinito a distanza d dagli elementi (diversi casi considerati)
- utilizzo dei pesi e posizioni ottime dedotte nel caso ideale (cioè con elementi puntiformi ideali, in assenza di mutual coupling e di piano di massa), considerando come antenna di riferimento la KATHREIN 742264
- confronto con le prestazioni della KATHREIN 742264

Sono riportati, per tutti i casi di interesse:

- lunghezza dell'array (distanza tra i centri degli elementi radianti) L in metri
- diagramma di radiazione $P(\theta)$ definito come

$$P(\theta) = \sum_{m} w_{m} exp\left(j\frac{2\pi d_{m} cos(\theta)}{\lambda}\right)$$

- half power beam width (HPBW) in gradi nel caso ideale e nelle simulazioni con il piano di massa
- posizione del primo nullo nel diagramma di radiazione θ_n
- side lobe level (SLL) in dB nel caso ideale e nelle simulazioni con il piano di massa
- guadagno G in dBi nel caso ideale e nelle simulazioni con il piano di massa
- taper efficiency ϵ_T definito come

$$\epsilon_T = \frac{\left|\sum a_n\right|^2}{N\sum \left|a_n\right|^2}$$

dove a_n è il peso complesso attribuito all'elemento n-esimo, e N è il numero di elementi.

2 Test case

2.1 Test case 1

Obiettivi:

- $SLL_{ELEDIA} \approx SLL_{KATHREIN}$
- $L_{ELEDIA} < < L_{KATHREIN}$
- $\mathrm{HPBW}_{\mathrm{ELEDIA}} \approx \mathrm{HPBW}_{\mathrm{KATHREIN}}$

Risultati:

	Kathrein	ELEDIA	ELEDIA	ELEDIA	ELEDIA
Parametro	742264	IDEAL	${f groundplane}$	${f groundplane}$	${f groundplane}$
			d = 0.0357142	d = 0.04166	d = 0.08333
			$(d = \frac{\lambda}{4} @ 2.1 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 1.8 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 0.9 \text{ GHz})$
<i>L</i> [m]	1.316	0.911	=	=	=
HPBW @ 900 MHz [deg]	14.5	16.9	=	=	=
HPBW @ 1800 MHz [deg]	7.2	8.2	=	=	=
θ_n @ 900 MHz [deg]	unknown	20	=	=	=
θ_n @ 1800 MHz [deg]	unknown	10	=	=	=
SLL @ 900 MHz [dB]	14	14	=	=	=
SLL @ 1800 MHz [dB]	16	16	=	=	=
$G@~900~{ m MHz}~[m dBi]$	14	9.39	12.473	12.499	12.687
$G@~1800~{ m MHz}~[m dBi]$	17	12.1	15.515	15.585	15.586
ϵ_T @ 900 MHz	unknown	0.411	=	=	=
ϵ_T @ 1800 MHz	unknown	0.512	=	=	=

Fig. 1. Test Case 1: diagramma di radiazione a 900 MHz in assenza del piano di massa e per diverse distanze del piano di massa.

Fig. 2. Test Case 1: diagramma di radiazione a 1800 MHz in assenza del piano di massa e per diverse distanze del piano di massa.

2.2 Test case 2

Obiettivi:

- $SLL_{ELEDIA} < < SLL_{KATHREIN}$
- $L_{ELEDIA} \approx L_{KATHREIN}$
- $HPBW_{ELEDIA} \approx HPBW_{KATHREIN}$

Risultati:

	Kathrein	ELEDIA	ELEDIA	ELEDIA	ELEDIA
Parametro	742264	IDEAL	${f groundplane}$	${f groundplane}$	${f groundplane}$
			d = 0.0357142	d = 0.04166	d = 0.08333
			$(d = \frac{\lambda}{4} @ 2.1 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 1.8 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 0.9 \text{ GHz})$
<i>L</i> [m]	1.316	1.239	=	=	=
HPBW $@$ 900 MHz [deg]	14.5	14.2	=	=	=
HPBW @ 1800 MHz [deg]	7.2	6.1	=	=	=
θ_n @ 900 MHz [deg]	unknown	17.5	=	=	=
θ_n @ 1800 MHz [deg]	unknown	9	=	=	=
SLL @ 900 MHz [dB]	14	22	=	=	=
SLL @ 1800 MHz [dB]	16	24	=	=	=
$G@~900 \mathrm{~MHz} \mathrm{[dBi]}$	14	10.71	13.730	13.738	13.798
$G@~1800~{ m MHz}~[m dBi]$	17	13.58	16.653	16.671	16.714
ϵ_T @ 900 MHz	unknown	0.8868	=	=	=
ϵ_T @ 1800 MHz	unknown	0.8706	=	=	=

Fig. 3. Test Case 2: diagramma di radiazione a 900 MHz in assenza del piano di massa e per diverse distanze del piano di massa.

Fig. 4. Test Case 2: diagramma di radiazione a 1800 MHz in assenza del piano di massa e per diverse distanze del piano di massa.

2.3 Test case 3

Obiettivi:

- $SLL_{ELEDIA} < < SLL_{KATHREIN}$
- $L_{ELEDIA} < < L_{KATHREIN}$

 $\bullet\,$ nessun vincolo su HPBW

Risultati:

	Kathrein	ELEDIA	ELEDIA	ELEDIA	ELEDIA
Parametro	742264	IDEAL	${f groundplane}$	groundplane	${f groundplane}$
			d = 0.0357142	d = 0.04166	d = 0.08333
			$(d = \frac{\lambda}{4} @ 2.1 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 1.8 \text{ GHz})$	$(d = \frac{\lambda}{4} @ 0.9 \text{ GHz})$
<i>L</i> [m]	1.316	0.976	=	=	=
HPBW $@$ 900 MHz [deg]	14.5	14	=	=	=
HPBW @ 1800 MHz [deg]	7.2	10	=	=	=
θ_n @ 900 MHz [deg]	unknown	17.5	=	=	=
θ_n @ 1800 MHz [deg]	unknown	13	=	=	=
SLL @ 900 MHz [dB]	14	24	=	=	=
SLL @ 1800 MHz [dB]	16	26	=	=	=
$G@~900 \mathrm{~MHz} \mathrm{[dBi]}$	14	10.82	13.836	13.841	13.884
$G@~1800~{ m MHz}~[m dBi]$	17	12.19	15.233	15.243	15.247
ϵ_T @ 900 MHz	unknown	$1.34 \cdot 10^{-3}$	=	=	=
ϵ_T @ 1800 MHz	unknown	0.7645	=	=	=

Fig. 5. Test Case 3: diagramma di radiazione a 900 MHz in assenza del piano di massa e per diverse distanze del piano di massa.

Fig. 6. Test Case 3: diagramma di radiazione a 1800 MHz in assenza del piano di massa e per diverse distanze del piano di massa.