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An Effective Excitation Matching Method for the Synthesis of
Optimal Compromises between Sum and Difference Patterns

in Planar Arrays

P. Rocca, L. Manica, and A. Massa

Abstract
In this paper, the extension of tl@ontiguous Partition MethodC P M) from linear to
planar arrays is described and assessed. By exploiting goaperties of the solution
space, the generation of compromise sum-difference patieobtained through an optimal
excitation matching procedure based on a combinatoriahoaet The searching of the
solution is carried out thanks to an efficient path-seaghigorithm aimed at exploring the
solution space represented in terms of a graph. A set ofseptative results are reported

for the assessment as well as for comparison purposes.

Key words. Planar Arrays, Compromise patterns, Sum and differencdasoDirect acyclic

graph.



1 Introduction

In antenna design, the optimal synthesis of sum and difter@atterns is a classical problem.
In such a framework, the synthesis of array antennas ablertergte both a sum pattern and a
difference one has received some attention because ofahyglications in radar searching and
tracking [1][2]. Since exact methods of synthesizing inelggently optimum sum and differ-
ence arrays exist for both linear [3]-[6] and planar ardttitees [7][8], whether the complexity
and cost of the arising feed networks are affordable, therattove methods can be directly
used. However, since the implementation of two (or thregllfpindependent signal feeds is
generally expensive and complex, a number of alternatikgisas have been proposed to gen-
erate the two or three required patterns via shared feedonk$vat the cost of a reduction in the
quality of one or more patterns [2][9].

In order to avoid the need of a completely different feedimg¢iving) network for each opera-
tion mode, several researches [10]-[15] proposed to partihe original array in sub-arrays. In
such a scheme, the feeding network is usually devoted tgatimization of the sum channel, so
that the excitations of the arrays elements for such a modesymnd to the optimal one (e.g.,
Dolph-Chebyshev [3]). Then, the difference mode is obththanks to a suitable choice of the
weight of each sub-array. Consequently, a large part of thelevarchitecture is common to
both modes with a non negligible saving of costs. On the dihed, a compromise difference
pattern is obtained. The degree of optimality of the compsersolution is related to the num-
ber of sub-arrays, which establishes a trade-off betwests@nd performances. As a matter
of fact, a large number of sub-arrays allows better perfarces, but also implies higher costs.
Otherwise, few sub-arrays may imply unacceptable diffeegmatterns. For a fixed number of
sub-arrays, once the excitations of the sum pattern have fipesl, the problem is concerned
with the grouping of the array elements into sub-arrays &ecbomputation of their weights to
determine the best compromise difference pattern.

As far as the number of unknowns is concerned, it grows ptapully to the dimension of
the array and, usually, it turns out to be very large when agalications of planar arrays are
considered. Consequently, a standard use of global o@ttraiztechniques is not convenient
since a suboptimal solution is generally obtained in thetéthtime one has at his disposal.

As a matter of fact, the arising computational burden raiseg rapidly with the dimension of



the solution space. Although this circumstance is quitesuestimated in antenna design since
synthesis problems may have many different satisfactobpgtimal solutions, nevertheless
they can be significantly worse than the global ones.

In order to overcome such drawbacks, in Areale{11] the antenna aperture has been divided
into four quadrants and the monopulse function has beenngatdy combining the outputs
in @ monopulse comparator. The sum pattern and the differene have been generated with
all quadrants added in phase and with pairs of quadrantddddehase reversal, respectively.
Moreover, in order to reduce the number of unknowns, eactrauat quadrant has beaspriori
divided into sub-arrays (i.e., the sectors) and only theaudy weights have been calculated by
minimizing a suitable cost function again according to a8ated Annealing{ A) algorithm.

In an alternative fashion, D’Urso at. [14] formulated the problem in such a way that global op-
timization tools have to deal with a reduced number of unkmavBy exploiting the convexity
of the cost functional to be minimized with respect to a pathe unknowns (i.e., the sub-array
gains), an hybrid two-step optimization strategy has begtied instead of simultaneously op-
timizing (in the same way) both the involved variables. Asatter of fact, once the clustering
into sub-arrays has been determined by usirigdatechnique, the problem at hand gives rise
to a Convex Programming_(P) problem with a single minimum that can be retrieved with a
local optimization technique. Unfortunately, althougHhike[11] no a-priori informations are
necessary, the evaluation of the auxili@gry’ objective function is usually more cumbersome
than the original cost function. Such an event could reswdh excessively large computational
burden that would prevent the retrieval of the global optimin the available amount of time
or to efficiently deal with large planar arrays.

In [15], a computationally-effective method for the optinsampromise among sum and dif-
ference patterns has been proposed to deal with linearsarfBlye optimization problem has
been recast as a combinatorial one, thus significantly radube dimension of the solution
space and allowing a fast synthesis process. Because afntputational efficiency, such a
technique seems to be a good candidate to deal also withitwerdional £ D) arrays in order

to overcome the computational drawbacks of stochasticropgition methodologies. Towards
this end, a suitable implementation (not a simple extenseomandatory to keep also in the

planar case the best features of the linear approach boghnmdf reliability and computational



efficiency. As a matter of fact, unlike the linear case, trenpl structure requires two differ-
ence patterns (i.e., the differente— mode and theH — mode). Moreover, the dimensionality
of the problem at hand significantly grows with respect tolthear situation, thus enhancing
the computational problems in applying global optimizatwethodologies and thus preventing
their use also in hybrid modalities.

Therefore this paper is aimed at describing and assessigléimar extension of th€ P M
(in the following PC'P M) according to the following outline. The mathematical foation

is presented in Sect. 2 pointing out the main differencespared to the linear array case.
Section 3 is devoted to the numerical assessment. Both &stemsy check, carried out through
an asymptotic study, and a comparative analysis (unforélygust only a test case is available
in the recent literature) are considered. Finally, someroems are drawn in the concluding

section (Sect. 4).

2 Mathematical Formulation

Let us consider a planar array lying on the — plane whose array factor is given by

R S(r)
AF(0.6)= 30 D Eud ) nm 0 ®
r=—Rs=-5(r)

wherez, = [r — %(")] x d, andy, = [s — %(S)} x d,, d, andd, being the inter-element

distance along the andy direction, respectively. Moreovek, = 2%ﬁsz’m9cos¢> andk, =
Z{Sinesmqﬁ. Concerning independently optimum sum and differenceepadt they are gen-
erated by using three independent feeding networks anthgdtte excitation vectof =
{&s; 7= 21, 2R, s =41,..,£5(r)} 10 ¢ = {Crs = {(=r)s = Gr(ms) = {(=r)(=s); T =
1R s=1,..5()} and tog® = {gﬁ ==y = Gl T = LR
s=1,..,5(r)}, A = E, H, respectively. Otherwise, when sub-arraying strategiesan-
sidered ], the sum beam is generated in an optimal fashion by figirg¢, while the compro-
mise/A—modes are obtained through a grouping operation descripdtelaggregation vectors
A

&

QA = {CrAsa r= 17 7R7 s = 17 7S(T)} (2)



wherec: € [1, Q] is the sub-array index of the element located at e row ands-th column

within the array architecture. Accordingly, the comproendifference excitations are given by

= {77% = CTSO (CrAs? Q) qu7 r = 17 7R7 s = 17 7S(T>7 q = 17 7@} (3)

where g2 is the gain coefficient of the-th sub-array andD (¢, ¢) = 1if ¢ = ¢ and
O (c,ﬁ,, q) = 0, otherwise. Summarizing, the problem of defining the bestm@mise be-
tween sum and difference patterns is recast as the defirafitime configuration_:fpt and the
corresponding set of Weighgﬁt SO thatlfpt is as close as much as possibleto

Towards this end, thé€’PM is applied. Similarly to the linear array case, the follog/icost

function is defined

SO SR I 2 [[0f — wrsg ()]

V() = ~

(4)

where N is the number of elements lying on the aperture [ifé.= Zle S(r)]. Moreover,

ol = s andw?,, = wr (¢*) is given by

TS Grs

wd — Zr 1ZS(T rs (ﬁw C.I)
qu Er 123 1C (cm, )

r=1,..R, s=1,..,90); ¢=1,..,Q. (5

As regards to the sub-array weights, they are computed tecaggregation vectef* has been

identified by simply using the following relationship

qu:O(CTAS, q) wfsq r=1,.,R;, s=1,..,90r); ¢=1,...,Q. (6)

In order to determine the unknown clustering that minimi@ds the indication given in [16]
has been exploited. More in detail, it has been proved toanéiguous partitioft) of the array
elements is the optimal compromise solution. Accordinghg set of contiguous partitions

(i.e., the set of admissible solutions) is defined by iteedyi partitioning in() sub-sets the list

(1) A grouping of array elements is a contiguous partition if gemeric(r,, s»)-th array element belongs to
the ¢g-th sub-array only when two elements, namely the s;)-th element and thérs, s3)-th one, belong to the
same sub-array and the conditioft,, < a2 ,, < of,, holds true.

T282 T383



V = {v,; n=1,..., N} (n being the list index) of the array elements ordered accgrdin
the corresponding:’; values such that, < v, (n = 1,..,N — 1), v; = min,, {af, },
UN = MATyg {ozfs .

Although the dimension of th€C P M solution spacesy”’“"M | is significantly reduced com-

pared to that of full global optimizerg{("¢FM) — vs. DG = Q (QN-1 +1)]
Q-1
or hybrid global-local optimization techniqueB {7+ = Q™], non-negligible computational
problems still remain since the large amount of computafioasources needed to sample
JPCPM egpecially whenV enlarges as it happens in realistic planar architecturesréfare,
it is mandatory to devise an effective sampling procedute &b guarantee a good trade-off
between computational costs and optimality of the syn#eelscompromise solution. Towards
this end, the set of admissible solutions has been codedibBicect Acyclic Graph(D AG).
The D AG is composed by) rows andN columns. They-th row is related to the-th sub-array
(¢ = 1,...,Q), whereas the.-th column @ = 1, ..., N) maps they,-th element of the ordered
list V. An admissible compromise solution is coded into a pathptehby+), in the D AG.
Each pathy) is described by a set df vertexes{t,; n = 1,..., N} and throughV — 1 rela-
tions/links{e,; n =1, ..., N — 1} among the vertexes belonging to the path. With reference to
Fig. 1, each vertex, is indicated by a circle and each limk with an arrow from a vertex, to
another one,, . ; on the same row [i.eqrg (t,) = arg (t,.1) = r,, beingr,, the row of then-th
vertex,r, € [1, Q]) or down to an adjacent row [i.eurg (t,—1) = 1, andarg (t,) = r, + 1].
In order to identify the optimal compromise (or, in an equeva fashion, the optimal path,,,
inthe D AG), let us reformulate the concept diérder elementsf the linear case to the planar
representation in terms dP AG. Moreover, let us consider that analogously to the lineaeca
only the ‘border elementsof v (i.e., those vertexes,, n = 2, ..., N — 1 having at most one of
the adjacent vertexes,_; or t,,1, that belongs to a different row of the AG) are candidate
to change their sub-array membership without generatingatbmnissible aggregations. Ac-
cordingly, in order to determine the optimal sub-array agmrfationgfpt that minimizesl (QA)
(4), a sequence of trial paths? = {(t,&’“’,eﬁ,’?) ‘n=1,..Nym=1,..,N— 1} (k being
the iteration/trial index) is generated. Starting from aitial path«*) (k = 0) defined by
settingarg <t§0)> = 1 andaryg (t§3>) = @ and randomly choosing the other vertexes such as

arg <t£LOzl> < arg (t%0)> < arg (tg)ll), the pathy™®) is iteratively updatedy® «— *+1),
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>k — AEHDY just modifying the memberships of the border elements e G. More in

detail, the ‘border’ vertexes are updated as follows

(k) . (k) (k)
+1 'lf 1 =Tn
arg (tF) = ; (7)

r 1 if rfﬂl =P

while the Iinkseff_)l 2 link [arg ( ¢ ) , arg (tﬁf))] ande!® 2 link [arg <tg€)> , arg (tﬂlﬂ

connected to the “border” vertef” are modified through the relationships

(k+1)
€n—1

link [rn , Sf’ + 1} if rgf_l = Tnk) ®)
e R Y A

and

k : k k
(he1) _ link [ +1, 7P + 1} if 7’(_1 =

9)

~.

link [rﬁk) -1, rﬁlk)} [ o =r
The iterative process stops when a maximum number of iterak,, .. (¢ > K,...) or the

following stationary condition holds true:

)l w9

0 <7 (10)

whereU®) = ¥ (¢~®), K, andn being a fixed number of iterations and a fixed numerical
threshold, respectively. At the end of the iterative sangpbf theD AG, the pathy°r* is found

and the corresponding aggregation vea_t@;;, is assumed as the optimal compromise solution.

3 Numerical Results

This section is aimed at assessing the effectiveness aPthE M through a set of represen-
tative results from several numerical simulations. Thearmmg of this section is organized
as follows. Firstly, some experiments are presented in Sedi: 3.1 to analyze the behavior

of the proposed approach in matching a reference patterdifferent numbers of sub-arrays.



Successively, a comparative study is carried out (Sub-S2&) by considering the available

test case concerned with planar geometries and previcasigfin [11].

3.1 Pattern Matching

In the first test case, the planar array consistd/gf = 4 x N = 316 elements equally-spaced
(dy =d, = g) elements arranged on a circular aperture 5\ in radius. Because of the circu-
lar symmetry, the synthesis procedure is only concerneld Wit= 79 elements. Moreover, the
sum pattern excitationshave been fixed to those of a Taylor pattern [7] withL = —35dB
andn = 6. On the other hand, the optimal differenfle— mode excitations;” have been cho-
sen to afford a Bayliss pattern [8] withl.L. = —40dB andn = 5. The corresponding three-
dimensional§ D) representations of the relative power distributions eported in Fig. 2 where
u = sin # cos ¢ andv = sin fsin ¢ [17], beingd € [0,90°] andg € [0, 360°], respectively. As re-
gards to the compromise synthesis, the optimization haslbeged to the differencél —mode
by exploiting the following relationship” = {2 = —/: r=1,..,R; s =1,..,5(r)} that
holds for theE' — mode excitations due to the symmetry properties.

In the first experiment, the number of sub-arrays has beaad/&om @ = 3 up to@ = 10.
Figure 3 shows th8D representations of the synthesizHd— mode patterns. As it can be
observed, the shapes of both the main lobes and the sideddbes compromise distributions
get closer to the reference one [Fig.bg(when the ratiog reduces. In order to better show
such a trend and to efficiently represent the behavior ofitteelsbes, let us analyze tk&lelobe

ratio (SLR) defined as

0<o<Z (11)

" maxg [AF

whereAF (0, ¢) indicates the array factor. By following the same guidediive[11], theSLR
has been controlled in the rangec [0°,80°] since theH — mode pattern vanishes at =
90°. As expected, the behavior of ti¥d. R approximates that of the reference pattern wien
increases (Fig. 4). Such an indication is quantitativelyfcomed by the statistics of th€L R
values given in Tab. | as well as, pictorially, by the plotsHig. 5 where the pattern values

along thep = 0° cut are shown.



3.2 Comparative Assessment

To the best of the authors’ knowledge, the topic of planaraulying has been recently ad-
dressed only by Arest al. in [11]. More in detail, a Simulated Annealing () procedure has
been used to determine the sub-array weights foreafixedsub-array configuration by mini-
mizing a suitable cost function aimed at penalizing theagisé of theS L L of the compromise
pattern from a prescribed value.

For comparison purposes, let us consider the same arrayeggoaf [11]. More in detail, the
elements are placed orea x 20 regular grid ¢, = d, = g) lying on thezy-plane. The radius
of the circular aperture of the antenna is equat te 4.85 \. The sum excitations have been
fixed to those values affording a circular Taylor pattern\ith SLL = —35dB andn = 6.
Concerning the compromise solutiadp,= 3 sub-arrays have been considered.

As far as the comparative study is concerned, the final soiubf the C' PM-based algo-
rithm (i.e., definition ofc[l, andgin) has been required to presefit. R values smaller than
those from theS A approach [11]. Since thBC PM is an excitation matching method, it has
been iteratively applied by updating the reference difieeepattern until the constraints on the
compromise solution were satisfied. Accordingly, a sudoessf reference excitationg”*),

k = 1,..., K have been selected. In particular, they have been fixed wetbhda Bayliss

difference pattern [8] witth = 6 and SLLZSZ"’) = =25dB (k = 1), SLLZSZ‘”) = —-30dB
(k = 2), andSLLfigf) = —35dB (k = 3). The aggregations obtained at the end of each

=opt

k-th iteration by thePC PM have cost function values equal ‘Eo(cH(l)> = 0.65 x 1071,

v (giff)) = 0.31 x 107%, and ¥ <gf;(t3)> = (.27 x 107, respectively. Although the appli-
cation of thePC PM could be further iterated by defining others reference targhe pro-
cess has been stoppedkat= k,,; = 3 since the requiremenS[LRTCPM (¢) < SLR4 (¢),

0° < ¢ < 80°] has been fulfilled by the compromise solutiarf{ = ci¢”, g, = g,
The corresponding relative power distributions are shawig. 6 where the solution obtained
by Areset. al[11] is reported [Fig. &4)], as well. To better point out the capabilities of the
iterative PC'PM, also the plots of th& RL values (Fig. 7) and the corresponding statistics
(Tab. 1) are given. Moreover, in order to make tR€' P M results reproducible, the sub-array
configurations and weights are given in Tab. Ill. The listdajits of Tab. Il (second row)

indicate the sub-array memberships of tie= 75 array elements belonging to a quadrant of

10



the antenna aperture.

Finally, let us analyze the computational issues. The tatabunt ofC' PU-time to get the
final solution wasT},, = 2.6361 [sec] (i.e., T = 0.8148[sec], T® = 0.8302[sec], and
T®) = 0.9911 [sec]). Moreover, the number of iterations required at each stegpyhthesize
an intermediate compromise solution is equakﬁét =14, K(pz = 14, andK(?’t = 17, respec-

tively.

4 Conclusions

In this paper, a combinatorial approach for the synthessubtarrayed monopulse planar an-
tennas has been presented. Starting from a simple and conepaesentation of the space of
admissible solutions, the synthesis of compromise diffeeenodes has been obtained through
a path searching procedure that allows a considerable tiedunf the problem complexity as
well as a significant saving in terms of storage resources(aRt’-time. The proposed tech-
nique has been assessed through some experiments conegtimédgh-dimension synthesis
problems. The obtained results clearly indicate that ttep@sed scheme can be of interest
when the number of degrees of freedom of the synthesis atibamdy large and computation-

ally unfeasible for stochastic optimization procedures.
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FIGURE CAPTIONS

e Figure 1. DAG Representation.

e Figure 2. Pattern Matching N = 316, d = % r = 5\) - Relative power distribution of
the referenced) Taylor sum pattern{.L = —35dB,n = 6) [7] and of the b) H —mode

Bayliss difference patterr5(L.L. = —40dB, 7 = 5) [8], respectively.

e Figure 3. Pattern Matching N = 316, d = % r = 5)\) - Relative power distribution of
the synthesized! — mode difference pattern wheraf @) = 3, (b) Q = 4, (¢) Q = 6, and

(d) Q = 10.

e Figure4. Pattern Matching N = 316, d = g r = 5]) - Plots of theS LR values of the
Bayliss pattern{ LL = —40dB, nn = 5) [8] and of the compromis& — mode difference
patterns wheid) = 3, 4, 6, 10 (¢ € [—80°, 80°]).

e Figure5. Pattern Matching N = 316, d = % r = 5\) - Azimuthal (» = 0°) plots of the
relative power of the Bayliss patterd [ L = —40dB, n = 5) [8] and of the compromise

H — mode patterns wheid) = 3, 4, 6, 10.

e Figure 6. Comparative Assessmeil¥ = 300, d = g r = 4.85)\, Q = 3) - Relative
power distribution of thed — mode compromise pattern synthesized wit) the S A ap-
proach [11] and the?C' PM when the Reference Bayliss pattein= 6 [8] presents
a sidelobe level equal tbX SLL) = —254dB, (¢) SLLLY = —30dB, and €
SLLY = —35dB.

e Figure 7. Comparative AssessmefiV¥ = 300, d = % r = 4.85), Q = 3) - Plots
of the SLR values of the compromis& — mode difference patterns synthesized by
the SA approach [11] and th&C'PM when the Reference Bayliss pattétn= 6 [8]
presents a sidelobe level equalSLL\) = —25dB, SLL? = ~304B, and €)
SLLY = —35dB (¢ € [-80°, 80°)).
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TABLE CAPTIONS

e Tablel. Pattern Matching N = 316, d = 4, r = 5)) - Statistics of theSLR values in
Fig. 3.

e Tablell. Comparative Assessmgmt = 300, d = g r = 4.85), Q = 3) - Statistics of
the SLR values of theH — mode difference pattern synthesized with thel approach
[11] and with the iterative?C'PM (Reference Bayliss pattefh = 6 [8]: SLLTef
~25dB, SLLIY = —30dB, andSLL" = —35dB).

e Tablelll. Comparative Assessmeiif = 300, d = g r = 4.85)\, Q = 3) - Sub-array
configurations and weights obtained with tR€' P (Reference Bayliss pattern= 6

[8]: SLL,.' = ~25dB, SLL/\?) = ~30dB, andSLL = —35dB).
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[dB] min {SLR} | max {SLR} | av{SLR} | var {SLR}
Reference [8] —40.44 —27.29 —36.68 6.05
Q=3 —33.82 —16.48 —26.74 14.26
Q=4 —37.32 —15.68 —31.56 15.11
Q=06 —36.67 —17.47 —31.25 26.30
Q=10 —38.72 —23.75 —34.77 11.46
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[dB] min {SLR} | max {SLR} | av{SLR} | var {SLR}
SA[11] —27.70 —18.93 —22.52 6.41
CPM : SLLIV = —25dB |  —23.30 —14.58 | —21.48 3.93
CPM : SLLIY = —30dB | —28.78 —16.95 —24.08 14.15
cPM: SLL*® = —35dB | —29.43 —18.94 —25.87 5.74

ref




H(1) _ H(2) _ H(kopt) __

SLL,.;' = —25dB | SLL,.;’ = —=30dB | SLL, ;" = —35dB
11 11 11
11122 11112 11111
111222 111222 111112
1112223 1122222 1112222

c 11122233 11222333 11222222

- 111222333 112233333 112233322
111222333 112233333 112233332
111222333 112233333 112233333
1112233333 1122333333 1123333332
1112233333 1122333333 1123333332

g1 0.4668 0.3337 0.3355

g0 1.3435 0.9763 0.9381

g3 2.1736 1.6091 1.4469
Tab. Il - P. Rocca et al., “An effective excitation matching method ...”
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