
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38123 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
AN EFFECTIVE EXCITATION MATCHING METHOD FOR THE 
SYNTHESIS OF OPTIMAL COMPROMISES BETWEEN SUM AND 
DIFFERENCE PATTERNS IN PLANAR ARRAYS 
 
P. Rocca, L. Manica, and A. Massa 
 
 
January 2008 
 
Technical Report # DISI-11-053 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



An Effective Excitation Matching Method for the Synthesis of

Optimal Compromises between Sum and Difference Patterns

in Planar Arrays

P. Rocca, L. Manica, and A. Massa,EM Academy Fellow

ELEDIA Research Group

Department of Information and Communication Technology,

University of Trento, Via Sommarive 14, 38050 Trento - Italy

Tel. +39 0461 882057, Fax +39 0461 882093

E-mail: andrea.massa@ing.unitn.it,

{ paolo.rocca, luca.manica}@dit.unitn.it

Web:http://www.eledia.ing.unitn.it

1



An Effective Excitation Matching Method for the Synthesis of

Optimal Compromises between Sum and Difference Patterns

in Planar Arrays

P. Rocca, L. Manica, and A. Massa

Abstract

In this paper, the extension of theContiguous Partition Method(CPM ) from linear to

planar arrays is described and assessed. By exploiting someproperties of the solution

space, the generation of compromise sum-difference patterns is obtained through an optimal

excitation matching procedure based on a combinatorial method. The searching of the

solution is carried out thanks to an efficient path-searching algorithm aimed at exploring the

solution space represented in terms of a graph. A set of representative results are reported

for the assessment as well as for comparison purposes.

Key words: Planar Arrays, Compromise patterns, Sum and difference modes, Direct acyclic

graph.
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1 Introduction

In antenna design, the optimal synthesis of sum and difference patterns is a classical problem.

In such a framework, the synthesis of array antennas able to generate both a sum pattern and a

difference one has received some attention because of theirapplications in radar searching and

tracking [1][2]. Since exact methods of synthesizing independently optimum sum and differ-

ence arrays exist for both linear [3]-[6] and planar architectures [7][8], whether the complexity

and cost of the arising feed networks are affordable, then the above methods can be directly

used. However, since the implementation of two (or three) totally independent signal feeds is

generally expensive and complex, a number of alternative solutions have been proposed to gen-

erate the two or three required patterns via shared feed networks at the cost of a reduction in the

quality of one or more patterns [2][9].

In order to avoid the need of a completely different feeding (receiving) network for each opera-

tion mode, several researches [10]-[15] proposed to partition the original array in sub-arrays. In

such a scheme, the feeding network is usually devoted to the optimization of the sum channel, so

that the excitations of the arrays elements for such a mode correspond to the optimal one (e.g.,

Dolph-Chebyshev [3]). Then, the difference mode is obtained thanks to a suitable choice of the

weight of each sub-array. Consequently, a large part of the whole architecture is common to

both modes with a non negligible saving of costs. On the otherhand, a compromise difference

pattern is obtained. The degree of optimality of the compromise solution is related to the num-

ber of sub-arrays, which establishes a trade-off between costs and performances. As a matter

of fact, a large number of sub-arrays allows better performances, but also implies higher costs.

Otherwise, few sub-arrays may imply unacceptable difference patterns. For a fixed number of

sub-arrays, once the excitations of the sum pattern have been fixed, the problem is concerned

with the grouping of the array elements into sub-arrays and the computation of their weights to

determine the best compromise difference pattern.

As far as the number of unknowns is concerned, it grows proportionally to the dimension of

the array and, usually, it turns out to be very large when realapplications of planar arrays are

considered. Consequently, a standard use of global optimization techniques is not convenient

since a suboptimal solution is generally obtained in the limited time one has at his disposal.

As a matter of fact, the arising computational burden raisesvery rapidly with the dimension of
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the solution space. Although this circumstance is quite underestimated in antenna design since

synthesis problems may have many different satisfactory suboptimal solutions, nevertheless

they can be significantly worse than the global ones.

In order to overcome such drawbacks, in Ares etal. [11] the antenna aperture has been divided

into four quadrants and the monopulse function has been obtained by combining the outputs

in a monopulse comparator. The sum pattern and the difference one have been generated with

all quadrants added in phase and with pairs of quadrants added in phase reversal, respectively.

Moreover, in order to reduce the number of unknowns, each antenna quadrant has beena-priori

divided into sub-arrays (i.e., the sectors) and only the sub-array weights have been calculated by

minimizing a suitable cost function again according to a Simulated Annealing (SA) algorithm.

In an alternative fashion, D’Urso etal. [14] formulated the problem in such a way that global op-

timization tools have to deal with a reduced number of unknowns. By exploiting the convexity

of the cost functional to be minimized with respect to a part of the unknowns (i.e., the sub-array

gains), an hybrid two-step optimization strategy has been applied instead of simultaneously op-

timizing (in the same way) both the involved variables. As a matter of fact, once the clustering

into sub-arrays has been determined by using aSA technique, the problem at hand gives rise

to a Convex Programming (CP ) problem with a single minimum that can be retrieved with a

local optimization technique. Unfortunately, although unlike [11] no a-priori informations are

necessary, the evaluation of the auxiliaryCP objective function is usually more cumbersome

than the original cost function. Such an event could result in an excessively large computational

burden that would prevent the retrieval of the global optimum in the available amount of time

or to efficiently deal with large planar arrays.

In [15], a computationally-effective method for the optimal compromise among sum and dif-

ference patterns has been proposed to deal with linear arrays. The optimization problem has

been recast as a combinatorial one, thus significantly reducing the dimension of the solution

space and allowing a fast synthesis process. Because of its computational efficiency, such a

technique seems to be a good candidate to deal also with two-dimensional (2D) arrays in order

to overcome the computational drawbacks of stochastic optimization methodologies. Towards

this end, a suitable implementation (not a simple extension) is mandatory to keep also in the

planar case the best features of the linear approach both in term of reliability and computational

4



efficiency. As a matter of fact, unlike the linear case, the planar structure requires two differ-

ence patterns (i.e., the differenceE −mode and theH −mode). Moreover, the dimensionality

of the problem at hand significantly grows with respect to thelinear situation, thus enhancing

the computational problems in applying global optimization methodologies and thus preventing

their use also in hybrid modalities.

Therefore this paper is aimed at describing and assessing the planar extension of theCPM

(in the followingPCPM) according to the following outline. The mathematical formulation

is presented in Sect. 2 pointing out the main differences compared to the linear array case.

Section 3 is devoted to the numerical assessment. Both a consistency check, carried out through

an asymptotic study, and a comparative analysis (unfortunately, just only a test case is available

in the recent literature) are considered. Finally, some comments are drawn in the concluding

section (Sect. 4).

2 Mathematical Formulation

Let us consider a planar array lying on thexy − plane whose array factor is given by

AF (θ, φ) =

R
∑

r=−R

S(r)
∑

s=−S(r)

ξrse
j(kxxr+kyys), n,m 6= 0 (1)

wherexr =
[

r − sgn(r)
2

]

× dx andys =
[

s− sgn(s)
2

]

× dy, dx anddy being the inter-element

distance along thex and y direction, respectively. Moreover,kx = 2π
λ
sinθcosφ and ky =

2π
λ
sinθsinφ. Concerning independently optimum sum and difference patterns, they are gen-

erated by using three independent feeding networks and setting the excitation vectorξ =

{ξrs; r = ±1, ...,±R; s = ±1, ...,±S(r)} to ζ =
{

ζrs = ζ(−r)s = ζr(−s) = ζ(−r)(−s); r =

1, ..., R; s = 1, ..., S(r)} and to ς△ =
{

ς△rs = ς
△

(−r)s = −ς△
r(−s) = −ς△(−r)(−s); r = 1, ..., R;

s = 1, ..., S(r)}, △ = E, H, respectively. Otherwise, when sub-arraying strategies are con-

sidered [?], the sum beam is generated in an optimal fashion by fixingξ = ζ, while the compro-

mise△−modes are obtained through a grouping operation described by the aggregation vectors

c△

c△ =
{

c△rs; r = 1, ..., R; s = 1, ..., S(r)
}

(2)
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wherec△rs ∈ [1, Q] is the sub-array index of the element located at ther-th row ands-th column

within the array architecture. Accordingly, the compromise difference excitations are given by

γ△ =
{

γ△rs = ζrsO
(

c△rs, q
)

g△q ; r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q
}

(3)

whereg△q is the gain coefficient of theq-th sub-array andO
(

c△rs, q
)

= 1 if c△rs = q and

O
(

c△rs, q
)

= 0, otherwise. Summarizing, the problem of defining the best compromise be-

tween sum and difference patterns is recast as the definitionof the configurationc△opt and the

corresponding set of weightsg△
opt

so thatγ△
opt

is as close as much as possible toς△.

Towards this end, theCPM is applied. Similarly to the linear array case, the following cost

function is defined

Ψ
(

c△
)

=

∑Q

q=1

∑R

r=1

∑S(r)
s=1 ζ

2
rs

∣

∣

[

α△

rs − wrsq

(

c△
)]∣

∣

2

N
(4)

whereN is the number of elements lying on the aperture [i.e.,N =
∑R

r=1 S(r)]. Moreover,

α△

rs = ς
△
rs

ζrs

andw△

rsq = wrsq

(

c△
)

is given by

w△

rsq =

∑R

r=1

∑S(r)
s=1 ζ

2
rsO

(

c△rs, q
)

α△

rs

∑R

r=1

∑S(r)
s=1 ζ

2
rsO

(

c
△
rs, q

) , r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q. (5)

As regards to the sub-array weights, they are computed once the aggregation vectorc△ has been

identified by simply using the following relationship

g△q = O
(

c△rs, q
)

w△

rsq r = 1, ..., R; s = 1, ..., S(r); q = 1, ..., Q. (6)

In order to determine the unknown clustering that minimizes(4), the indication given in [16]

has been exploited. More in detail, it has been proved that acontiguous partition(1) of the array

elements is the optimal compromise solution. Accordingly,the set of contiguous partitions

(i.e., the set of admissible solutions) is defined by iteratively partitioning inQ sub-sets the list

(1) A grouping of array elements is a contiguous partition if thegeneric(r2, s2)-th array element belongs to
theq-th sub-array only when two elements, namely the(r1, s1)-th element and the(r3, s3)-th one, belong to the
same sub-array and the conditionα△

r1s1
< α△

r2s2
< α△

r3s3
holds true.
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V = {vn; n = 1, ..., N} (n being the list index) of the array elements ordered according to

the correspondingα△

rs values such thatvn ≤ vn+1 (n = 1, ..., N − 1), v1 = minrs

{

α△

rs

}

,

vN = maxrs

{

α△

rs

}

.

Although the dimension of thePCPM solution space,ℑPCPM , is significantly reduced com-

pared to that of full global optimizers [D(PCPM) =







N − 1

Q− 1






vs.D(GA) = Q

(

QN−1 + 1
)

]

or hybrid global-local optimization techniques [D(Hybrid) = QN ], non-negligible computational

problems still remain since the large amount of computational resources needed to sample

ℑPCPM especially whenN enlarges as it happens in realistic planar architecture. Therefore,

it is mandatory to devise an effective sampling procedure able to guarantee a good trade-off

between computational costs and optimality of the synthesized compromise solution. Towards

this end, the set of admissible solutions has been coded intoa Direct Acyclic Graph(DAG).

TheDAG is composed byQ rows andN columns. Theq-th row is related to theq-th sub-array

(q = 1, ..., Q), whereas then-th column (n = 1, ..., N) maps thevn-th element of the ordered

list V . An admissible compromise solution is coded into a path, denoted byψ, in theDAG.

Each pathψ is described by a set ofN vertexes,{tn; n = 1, ..., N} and throughN − 1 rela-

tions/links{en; n = 1, ..., N − 1} among the vertexes belonging to the path. With reference to

Fig. 1, each vertextn is indicated by a circle and each linken with an arrow from a vertextn to

another onetn+1 on the same row [i.e.,arg (tn) = arg (tn+1) = rn, beingrn the row of then-th

vertex,rn ∈ [1, Q]) or down to an adjacent row [i.e.,arg (tn−1) = rn andarg (tn) = rn + 1].

In order to identify the optimal compromise (or, in an equivalent fashion, the optimal pathψopt

in theDAG), let us reformulate the concept of “border elements” of the linear case to the planar

representation in terms ofDAG. Moreover, let us consider that analogously to the linear case,

only the “border elements” of ψ (i.e., those vertexestn, n = 2, ..., N − 1 having at most one of

the adjacent vertexes,tn−1 or tn+1, that belongs to a different row of theDAG) are candidate

to change their sub-array membership without generating non-admissible aggregations. Ac-

cordingly, in order to determine the optimal sub-array configurationc△opt that minimizesΨ
(

c△
)

(4), a sequence of trial pathsψ(k) =
{(

t
(k)
n , e

(k)
m

)

; n = 1, ..., N ; m = 1, ..., N − 1
}

(k being

the iteration/trial index) is generated. Starting from an initial pathψ(k) (k = 0) defined by

settingarg
(

t
(0)
1

)

= 1 andarg
(

t
(0)
N

)

= Q and randomly choosing the other vertexes such as

arg
(

t
(0)
n−1

)

≤ arg
(

t
(0)
n

)

≤ arg
(

t
(0)
n+1

)

, the pathψ(k) is iteratively updated (ψ(k) ← ψ(k+1),
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c△(k) ← c△(k+1)) just modifying the memberships of the border elements of theDAG. More in

detail, the “border” vertexes are updated as follows

arg
(

t(k+1)
n

)

=











r
(k)
n + 1 if r

(k)
n−1 = r

(k)
n

r
(k)
n − 1 if r

(k)
n+1 = r

(k)
n

, (7)

while the linkse(k)
n−1 , link

[

arg
(

t
(k)
n−1

)

, arg
(

t
(k)
n

)]

ande(k)
n , link

[

arg
(

t
(k)
n

)

, arg
(

t
(k)
n+1

)]

connected to the “border” vertext(k)
n are modified through the relationships

e
(k+1)
n−1 =











link
[

r
(k)
n , r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
[

r
(k)
n − 1, r

(k)
n − 1

]

if r
(k)
n+1 = r

(k)
n

(8)

and

e(k+1)
n =











link
[

r
(k)
n + 1, r

(k)
n + 1

]

if r
(k)
n−1 = r

(k)
n

link
[

r
(k)
n − 1, r

(k)
n

]

if r
(k)
n+1 = r

(k)
n

. (9)

The iterative process stops when a maximum number of iterationsKmax (k > Kmax) or the

following stationary condition holds true:

∣

∣

∣
KwΨ(k−1) −

∑Kw

h=1 Ψ(h)
∣

∣

∣

Ψ(k)
≤ η (10)

whereΨ(k) = Ψ
(

c△(k)
)

, Kw andη being a fixed number of iterations and a fixed numerical

threshold, respectively. At the end of the iterative sampling of theDAG, the pathψopt is found

and the corresponding aggregation vector,c
△

opt, is assumed as the optimal compromise solution.

3 Numerical Results

This section is aimed at assessing the effectiveness of thePCPM through a set of represen-

tative results from several numerical simulations. The remaining of this section is organized

as follows. Firstly, some experiments are presented in Sub-Sect. 3.1 to analyze the behavior

of the proposed approach in matching a reference pattern fordifferent numbers of sub-arrays.
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Successively, a comparative study is carried out (Sub-Sect. 3.2) by considering the available

test case concerned with planar geometries and previously faced in [11].

3.1 Pattern Matching

In the first test case, the planar array consists ofNtot = 4× N = 316 elements equally-spaced

(dx = dy = λ
2
) elements arranged on a circular aperturer = 5λ in radius. Because of the circu-

lar symmetry, the synthesis procedure is only concerned withN = 79 elements. Moreover, the

sum pattern excitationsζ have been fixed to those of a Taylor pattern [7] withSLL = −35 dB

andn = 6. On the other hand, the optimal differenceH −mode excitationsςH have been cho-

sen to afford a Bayliss pattern [8] withSLL = −40 dB andn = 5. The corresponding three-

dimensional (3D) representations of the relative power distributions are reported in Fig. 2 where

u = sin θ cos φ andv = sin θ sinφ [17], beingθ ∈ [0, 90o] andφ ∈ [0, 360o], respectively. As re-

gards to the compromise synthesis, the optimization has been limited to the differenceH−mode

by exploiting the following relationshipγE =
{

γE
rs = −γH

rs; r = 1, ..., R; s = 1, ..., S(r)
}

that

holds for theE −mode excitations due to the symmetry properties.

In the first experiment, the number of sub-arrays has been varied fromQ = 3 up toQ = 10.

Figure 3 shows the3D representations of the synthesizedH − mode patterns. As it can be

observed, the shapes of both the main lobes and the sidelobesof the compromise distributions

get closer to the reference one [Fig. 2(b)] when the ratioN
Q

reduces. In order to better show

such a trend and to efficiently represent the behavior of the side-lobes, let us analyze thesidelobe

ratio (SLR) defined as

SLR (φ) =
SLL (φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ <

π

2
(11)

whereAF (θ, φ) indicates the array factor. By following the same guidelines in [11], theSLR

has been controlled in the rangeφ ∈ [0o, 80o] since theH − mode pattern vanishes atφ =

90o. As expected, the behavior of theSLR approximates that of the reference pattern whenQ

increases (Fig. 4). Such an indication is quantitatively confirmed by the statistics of theSLR

values given in Tab. I as well as, pictorially, by the plots inFig. 5 where the pattern values

along theφ = 0o cut are shown.
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3.2 Comparative Assessment

To the best of the authors’ knowledge, the topic of planar sub-arraying has been recently ad-

dressed only by Areset al. in [11]. More in detail, a Simulated Annealing (SA) procedure has

been used to determine the sub-array weights for apre-fixedsub-array configuration by mini-

mizing a suitable cost function aimed at penalizing the distance of theSLL of the compromise

pattern from a prescribed value.

For comparison purposes, let us consider the same array geometry of [11]. More in detail, the

elements are placed on a20× 20 regular grid (dx = dy = λ
2
) lying on thexy-plane. The radius

of the circular aperture of the antenna is equal tor = 4.85 λ. The sum excitations have been

fixed to those values affording a circular Taylor pattern [7]with SLL = −35 dB andn = 6.

Concerning the compromise solution,Q = 3 sub-arrays have been considered.

As far as the comparative study is concerned, the final solution of theCPM-based algo-

rithm (i.e., definition ofcHopt andgH

opt
) has been required to presentSLR values smaller than

those from theSA approach [11]. Since thePCPM is an excitation matching method, it has

been iteratively applied by updating the reference difference pattern until the constraints on the

compromise solution were satisfied. Accordingly, a succession of reference excitationsςH(k),

k = 1, ..., K have been selected. In particular, they have been fixed to those of a Bayliss

difference pattern [8] withn = 6 andSLLH(k)
ref = −25 dB (k = 1), SLLH(k)

ref = −30 dB

(k = 2), andSLLH(k)
ref = −35 dB (k = 3). The aggregations obtained at the end of each

k-th iteration by thePCPM have cost function values equal toΨ
(

c
H(1)
opt

)

= 0.65 × 10−1,

Ψ
(

c
H(2)
opt

)

= 0.31 × 10−1, andΨ
(

c
H(3)
opt

)

= 0.27 × 10−1, respectively. Although the appli-

cation of thePCPM could be further iterated by defining others reference targets, the pro-

cess has been stopped atk = kopt = 3 since the requirement [SLRPCPM (φ) < SLRSA (φ),

0o ≤ φ ≤ 80o] has been fulfilled by the compromise solution (cHopt = c
H(3)
opt , gH

opt
= gH(3)

opt
).

The corresponding relative power distributions are shown in Fig. 6 where the solution obtained

by Areset. al [11] is reported [Fig. 6(a)], as well. To better point out the capabilities of the

iterativePCPM , also the plots of theSRL values (Fig. 7) and the corresponding statistics

(Tab. II) are given. Moreover, in order to make thePCPM results reproducible, the sub-array

configurations and weights are given in Tab. III. The lists ofdigits of Tab. III (second row)

indicate the sub-array memberships of theN = 75 array elements belonging to a quadrant of
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the antenna aperture.

Finally, let us analyze the computational issues. The totalamount ofCPU-time to get the

final solution wasTtot = 2.6361 [sec] (i.e., T (1) = 0.8148 [sec], T (2) = 0.8302 [sec], and

T (3) = 0.9911 [sec]). Moreover, the number of iterations required at each step to synthesize

an intermediate compromise solution is equal toK
(1)
opt = 14,K(2)

opt = 14, andK(3)
opt = 17, respec-

tively.

4 Conclusions

In this paper, a combinatorial approach for the synthesis ofsub-arrayed monopulse planar an-

tennas has been presented. Starting from a simple and compact representation of the space of

admissible solutions, the synthesis of compromise difference modes has been obtained through

a path searching procedure that allows a considerable reduction of the problem complexity as

well as a significant saving in terms of storage resources andCPU-time. The proposed tech-

nique has been assessed through some experiments concernedwith high-dimension synthesis

problems. The obtained results clearly indicate that the proposed scheme can be of interest

when the number of degrees of freedom of the synthesis at handis very large and computation-

ally unfeasible for stochastic optimization procedures.
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FIGURE CAPTIONS

• Figure 1. DAGRepresentation.

• Figure 2. Pattern Matching(N = 316, d = λ
2
, r = 5λ) - Relative power distribution of

the reference (a) Taylor sum pattern (SLL = −35 dB,n = 6) [7] and of the (b)H−mode

Bayliss difference pattern (SLL = −40 dB, n = 5) [8], respectively.

• Figure 3. Pattern Matching(N = 316, d = λ
2
, r = 5λ) - Relative power distribution of

the synthesizedH −mode difference pattern when (a) Q = 3, (b) Q = 4, (c) Q = 6, and

(d) Q = 10.

• Figure 4. Pattern Matching(N = 316, d = λ
2
, r = 5λ) - Plots of theSLR values of the

Bayliss pattern (SLL = −40 dB, n = 5) [8] and of the compromiseH−mode difference

patterns whenQ = 3, 4, 6, 10 (φ ∈ [−80o, 80o]).

• Figure 5. Pattern Matching(N = 316, d = λ
2
, r = 5λ) - Azimuthal (φ = 0o) plots of the

relative power of the Bayliss pattern (SLL = −40 dB, n = 5) [8] and of the compromise

H −mode patterns whenQ = 3, 4, 6, 10.

• Figure 6. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Relative

power distribution of theH −mode compromise pattern synthesized with (a) theSA ap-

proach [11] and thePCPM when the Reference Bayliss patternn = 6 [8] presents

a sidelobe level equal to (b) SLLH(1)
ref = −25 dB, (c) SLLH(2)

ref = −30 dB, and (d)

SLL
H(3)
ref = −35 dB.

• Figure 7. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Plots

of the SLR values of the compromiseH − mode difference patterns synthesized by

theSA approach [11] and thePCPM when the Reference Bayliss patternn = 6 [8]

presents a sidelobe level equalto SLLH(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, and (d)

SLL
H(3)
ref = −35 dB (φ ∈ [−80o, 80o]).
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TABLE CAPTIONS

• Table I. Pattern Matching(N = 316, d = λ
2
, r = 5λ) - Statistics of theSLR values in

Fig. 3.

• Table II. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Statistics of

theSLR values of theH −mode difference pattern synthesized with theSA approach

[11] and with the iterativePCPM (Reference Bayliss patternn = 6 [8]: SLLH(1)
ref =

−25 dB, SLLH(2)
ref = −30 dB, andSLLH(3)

ref = −35 dB).

• Table III. Comparative Assessment(N = 300, d = λ
2
, r = 4.85λ, Q = 3) - Sub-array

configurations and weights obtained with thePCPM (Reference Bayliss patternn = 6

[8]: SLLH(1)
ref = −25 dB, SLLH(2)

ref = −30 dB, andSLLH(3)
ref = −35 dB).
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(a)

(b)

Fig. 2 - P. Rocca et al., “An effective excitation matching method ...”
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(a) (b)

(c) (d)

Fig. 3 - P. Rocca et al., “An effective excitation matching method ...”
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Fig. 4 - P. Rocca et al., “An effective excitation matching method ...”
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(a) (b)

(c) (d)

Fig. 6 - P. Rocca et al., “An effective excitation matching method ...”
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[dB] min {SLR} max {SLR} av {SLR} var {SLR}

Reference [8] −40.44 −27.29 −36.68 6.05

Q = 3 −33.82 −16.48 −26.74 14.26

Q = 4 −37.32 −15.68 −31.56 15.11

Q = 6 −36.67 −17.47 −31.25 26.30

Q = 10 −38.72 −23.75 −34.77 11.46
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[dB] min {SLR} max {SLR} av {SLR} var {SLR}

SA [11] −27.70 −18.93 −22.52 6.41

CPM : SLL
H(1)
ref = −25 dB −23.30 −14.58 −21.48 3.93

CPM : SLL
H(2)
ref = −30 dB −28.78 −16.95 −24.08 14.15

CPM : SLL
H(3)
ref = −35 dB −29.43 −18.94 −25.87 5.74
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SLL
H(1)
ref = −25 dB SLL

H(2)
ref = −30 dB SLL

H(kopt)
ref = −35 dB

c

1 1

1 1 1 2 2

1 1 1 2 2 2

1 1 1 2 2 2 3

1 1 1 2 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 3 3 3 3 3

1 1 1 2 2 3 3 3 3 3

1 1

1 1 1 1 2

1 1 1 2 2 2

1 1 2 2 2 2 2

1 1 2 2 2 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3 3

1 1 2 2 3 3 3 3 3 3

1 1

1 1 1 1 1

1 1 1 1 1 2

1 1 1 2 2 2 2

1 1 2 2 2 2 2 2

1 1 2 2 3 3 3 2 2

1 1 2 2 3 3 3 3 2

1 1 2 2 3 3 3 3 3

1 1 2 3 3 3 3 3 3 2

1 1 2 3 3 3 3 3 3 2

g1 0.4668 0.3337 0.3355

g2 1.3435 0.9763 0.9381

g3 2.1736 1.6091 1.4469

Tab. III - P. Rocca et al., “An effective excitation matching method ...”
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