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Abstract - In this paper, the Contiguous Partition Method (CPM) is applied to the 

optimization of the directivity of difference patterns in monopulse planar array 

antennas. Since the excitations providing maximum directivity of planar arrays 

can be analytically computed and because of the excitation matching nature of 

the CPM, the problem at hand is recast as the synthesis of the difference 

compromise solution close as much as possible to the reference pattern with 

maximum directivity. Selected results are shown to point out the potentialities of 

the CPM-based approach. 

 

1. INTRODUCTION 

 
In monopulse radar systems for airborne applications [1], the synthesis of a sum 

and two spatially orthogonal difference patterns is required for search-and-track 

purposes. Since the available space is limited and because of the need of simple 

feed networks, an ever growing interest has been devoted to sub-arraying 

strategies [2]-[6]. In such a case, a set of excitations (either the sum or one 

difference) is fixed to the optimum, while the others are obtained by clustering the 

array elements into sub-arrays and weighting each of them. Such a synthesis 

method allows one to design trade-off solutions with reduced circuit complexity, 

low costs, and acceptable pattern features. To obtain good radar performances, 

the compromise solution should guarantee narrow beamwidth and low sidelobe 

levels (SLLs), high directivity, and deep normalized slope at boresight. 

Unfortunately, such requirements are incommensurable and the synthesis of 

compromise solutions has usually dealt with only the minimization of the SLLs for 

a given beamwidth. Other studies concerned with linear arrays have also 
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considered the maximization of the directivity [7]. As regards to the difference 

modes, the slope at boresight is the most critical feature to be carefully optimized, 

since it is strongly related to the ability to track a target. On the other hand, the 

gain values in correspondence with the peaks of the difference patterns are also 

significant indexes of the radar efficiency in achieving angle lock on of a distant 

target [8]. 

In such a framework, this letter considers a CPM-based strategy [9] for the 

optimization of the directivity of compromise difference patterns in monopulse 

planar array antenna. Since the CPM is an effective and computationally-efficient 

excitation matching procedure and the optimal coefficients providing the 

maximum directivity can be easily computed through well known analytical 

procedures [10][11], the synthesis problem at hand is recast as the definition of 

the compromise solution that better matches the optimal directivity pattern. 

 

2. MATHEMATICAL FORMULATION 

 

Let us consider a planar array of N  radiating elements lying on the xy -plane and 

located on a uniform rectangular grid, ddd yx ==  being the inter-element 

spacing. The corresponding array factor is given by 
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where φθ cossinu = , φθ sinsinv =  ( [ ]20 πθ ,∈ , [ ]πφ 20,∈ ). Moreover, nx , ny  

and nI  are the coordinates and the real excitation of the thn −  element, 

respectively.  

In order to generate the sum pattern and the elevation (E-mode) and azimuth (H-

mode) difference beams, the array aperture is subdivided into four quadrants. 

The sum pattern is obtained by adding the outputs of all quadrants in phase, 

while the difference beams are generated with pairs of quadrants added in phase 

reversal. According to the sub-arraying strategy, each quadrant is then sub-

divided into Q  sectors or sub-arrays [3]. Thus, for each difference mode, the 

synthesis problem is concerned with the definition of the aggregation vector 

[ ]{ }N,...,n;Q,cC n 11 =∈=  [4], and the Q  weights { }Q,...,q;wW q 1==  to obtain 
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the “best compromise” close as much as possible to the optimal difference 

pattern with maximum directivity. Towards this end, the excitation matching 

nature of the CPM [9] is exploited by performing a two-stage procedure for each 

mode:  

(a)  the optimal excitation coefficients affording a difference pattern with 

maximum directivity are computed according to the guidelines in [10][11];  

(b)  the CPM is used to match the optimal pattern, thus defining the “best 

compromise” solution.  

More in detail, the directivity along the angular direction ( )v,u  is given by  

( ) ( )
BII

Iv,uAIv,uD
T

T

=                                              (2) 

where [ ]TNI,...,II 1= , ( ) *FFv,uA = , ( ) ( )[ ]Tvyuxjkvyuxjk NNe,...,eF ++= 11 , and the generic 

entry of the matrix B  is equal to ( )
mn

mn
k

ksin
mnb ρ

ρ=  if nm ≠  and 1=nnb  otherwise, 

mnρ  being the Euclidean distance between the thm −  and the thn −  element 

positions [11]. Moreover, T  and ∗ denote the transpose and the adjoint 

operation, respectively.  

Since the direction ( )maxmax v,u  of maximum directivity, maxD , of a difference 

pattern is not a-priori known, the maximization of ( )v,uD  is obtained by applying 

the excitation adjustment method [10][11]. In particular: 

(i) Starting from a trial direction ( ) ( )( )k
t

k
t v,u , 0=k , (e. g., the angular direction of 

maximum directivity of a uniformly-excited array), the excitation set ( )k
tI  is 

computed by solving the matrix equation )k()k(
t FBI 1−= ; 

(ii) The direction ( ) ( )( )11 ++ k
t

k
t v,u  of the array excited with ( )k

tI  is determined by 

identifying the maximum of ( ) ( )( )k
t

k
t v,uE ; 

(iii) The vector F  is updated, ( ) ( )( )11 ++= k
t

k
t v,uFF ;  

(iv) The process is then iterated ( K,...,k 1= ) until negligible differences between 

successive estimates of the angular direction occur [10].  

Once the set of optimal directivity excitations )K(
tmax II =  is computed, the cost 

function 
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is minimized by means of the CPM approach [9]. The coefficients sum
nqqcn IwI

n
δ=  

are the compromise difference mode coefficients, and sum
nI  indicates the thn −  

optimal sum excitation, 
nqcδ  being the Kronecher delta function. 

 

3. NUMERICAL ASSESSMENT 

 

Let us consider a rectangular array of 128=N  elements disposed on a 816×  

regular lattice with 2λ=d . The sum excitations are fixed to those of a pattern 

multiplication Dolph-Chebyshev array with dBSLL 20−=  [12] and, for the sake 

of space, the analysis is limited to the synthesis of the E-mode difference 

pattern. The optimal excitations ( )E
maxI  have been determined at the end of the 

first stage after 50=K  iterations. The synthesized optimal pattern is shown in 

Fig. 1 where the maximum value of directivity, 3117.Dmax = , is located at 

( ) ( )001019 2 .,.v,u maxmax
−×= . As far as the compromise synthesis is concerned, 

the values of the maximum directivity obtained with the CPM versus the 

number of sub-arrays are shown in Fig. 2, where the plot of optΨ  function is 

also reported. It is worth noting that the directivity values of the compromise 

solutions are generally close to the optimum one. In particular, the index 

max

CPMmax

D
DD

D
−=ξ  turns out to be %D 4≤ξ  when 4≥Q  and %D 1≤ξ  when 8≥Q  

(Fig. 2). For illustrative purposes, Figure 3 shows the synthesized 

compromise patterns when 4=Q  [Fig. 3(a)] and 8=Q  [Fig. 3(b)]. The 

reference pattern [Fig. 3(c)] is reported, as well. 
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4. CONCLUSIONS 

 

In this paper, a two-stage procedure for the optimization of the directivity of 

compromise difference patterns in monopulse planar sub-arrayed antennas has 

been considered. The CPM has been used to define the “best compromise” 

solution that better matches the optimum with maximum directivity for a given 

array geometry. Selected results have been reported to assess the effectiveness 

of the proposed approach. 
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Fig. 1 - Reference patterns synthesized at different iterations of the first stage. 
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Fig. 2 - Behaviors of the synthesized value of D  and of the cost function Ψ  

versus Q . 
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Fig. 3 - E-mode difference pattern: (a) compromise with 4=Q , (b) compromise 

with 8=Q , and (c) reference. 


