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Synthesis of Multi-Beam Sub-Arrayed Antennas through an

Excitation Matching Strategy

L. Manica, P. Rocca, G. Oliveri, and A. Massa

Abstract

This paper presents an innovative synthesis procedure to design sub-arrayed antennas af-

fording multiple patterns. The approach is based on an excitation matching procedure

aimed at generating one optimal pattern and multiple compromises close as much as pos-

sible to user-defined reference beams. A suitable modification of theK-means clustering

algorithm integrated into a customized version of the contiguous partition method is used

to efficiently sample the solution space looking for the bestcompromise excitations. A set

of representative numerical results is reported to give some indications on the reliability,

potentialities, and limitations of the proposed approach.

Key words: Linear Arrays, Multi-Beam Antennas, Sub-arraying.
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1 Introduction

The synthesis of switchable multi-beam antennas has alwaysreceived a great attention from the

scientific community because of the wide range of applications. Multi-beam antennas constitute

the radiating part of monopulse radar trackers [1] to determine the positions of moving targets

from the information collected by two different patterns (i.e., a sum pattern and a difference

one). Furthermore, cellular base stations and communication satellites are also equipped with

antennas generating multiple radiation patterns [2][3].

Multiple beams can be generated by means of reflector antennas equipped with multiple feeds

or using arrays of radiating elements. Nowadays, the lattersolution is preferred since it allows

the direct control of the illumination on the aperture, the electronic steering of the patterns as

well as the lower costs.

Several analytical methods have been developed to determine element excitations able to gener-

ate optimal sum patterns [4][5][6], difference patterns [7][8], and patterns with arbitrary shapes

[9][10]. Unfortunately, the synthesis of a switchable antenna affording multiple optimal pat-

terns implies the use of different and independent feeding networks. The total beamforming

network (BFN) is usually characterized by a complex layout with a large number of active

elements and high implementation costs. It is often more convenient to define compromise so-

lutions with suitable trade-offs between costs and radiation performances. In this framework,

a-priori fixed excitation amplitudes and optimized phase distributions for the generation of each

pattern [11][12][13] as well as partially-shared apertures [14] have been considered. Another

alternative is the use of sub-arrayed antennas [15]. The elements of the array are grouped into

clusters which are properly weighted to generate “best” compromise patterns. The price to

pay for the simplification ofBFN is an unavoidable reduction of the pattern performances

[16] to be limited thanks to a careful design of the sub-arrayed network and an optimization

of the sub-array weights. Different synthesis approaches have been proposed to generate a

single compromise beam pattern [17][18][19] and the designof sum and difference patterns

has been dealt with [20][21][22][23][24][25][26], as well. In this latter, one pattern (typically

the sum pattern) is generated by means of optimal excitations analytically-computed, while the

difference beam is obtained throughout the sub-arrayedBFN . As regards sum-difference com-

promises, excitation matching strategies [20][25], approaches based on evolutionary algorithms
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[21][22][23][26], and hybrid techniques [24][27] have been used.

Of course, the sub-arraying strategy can be also extended tothe synthesis of multi-beam anten-

nas [28], but such a potential has not been yet deeply investigated.By supposing the generation

of K + 1 patterns and exploiting the guidelines of [25], once the excitations of themain pat-

tern have been set through the primary feeding network,K sub-arrayed transmission lines can

be designed in a serial way [serial approach,Σ - Fig. 1(a)] to generate the sub-optimal beam

patterns. Whether on one hand the number of active elements is reduced with respect to the

completeBFN havingK+1 independent transmission lines, the antenna manufacturing could

still be impracticable or very complex due to the number of circuit crossing. The use of a com-

mon sub-array feed network can further simplify the complexity of the antenna design [parallel

approach,Π - Fig. 1(b)].

This paper deals with a synthesis method based on the parallel approach for the design of multi-

beam antennas. More specifically,K patterns are generated throughout a compromiseBFN

composed by a common sub-array, whereas the sub-array weights are independently computed

for each beam. Likewise [25], the solution of the problem at hand is formulated as the definition

of K compromise patterns close as much as possible toK reference beams by means of an

excitation matching strategy.

The paper is organized as follows. In Section 2, the problem is mathematically formulated and

the adopted metric as well as the solution searching procedure are presented. The results of

a set of representative experiments are reported in Sect. 3 to describe the synthesis process

(Sect. 3.1) and to assess the effectiveness of the proposed method (Sect. 3.2). Finally, some

conclusions are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider a uniform linear array ofN elements with inter-element distanced. In order

to generateK + 1 different beams on the same antenna aperture, the sub-arraying technique

[20] is considered. One pattern, calledmain pattern, is generated by means of a set of optimal

real excitationsA = {αn; n = 1, . . . , N}. The otherK compromise patternsare obtained by

aggregating the array elements intoQ sub-arrays and assigningK weights to each of them [Fig.

1(b)]. TheK sets of compromise real excitationsB(k) =
{
b
(k)
n ; n = 1, . . . , N

}
, k = 1, ..., K,
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are given by

B(k) =
{
b(k)
n = δcnqw

(k)
q αn; n = 1, . . . , N ; q = 1, . . . , Q

}
; k = 1, ..., K, (1)

wherecn ∈ [1, Q] is an integer index that identifies the sub-array membershipof then-th array

element to theq-th sub-array. The whole sub-array configuration is mathematically described

through the vectorC = {cn; n = 1, . . . , N} [23]. Moreover,w(k)
q is the weight coefficient of

theq-th sub-array related to thek-th beam andδcnq is the Kronecker delta function (δcnq = 1 if

cn = q, δcnq = 0 otherwise) [25].

Following the guidelines of the optimal matching approach presented in [25] and here properly

customized to the generation of multiple patterns, the problem is recast as the definition of the

sub-array aggregation,Copt, and ofK sets of sub-array weights,W (k)
opt =

{
w

(k)
q ; q = 1, . . . , Q

}
,

k = 1, . . . , K, that minimize the least square distance between the compromise excitations,

B(k), k = 1, . . . , K, and the reference ones,B(k)
ref =

{
β

(k)
n ; n = 1, . . . , N

}
, k = 1, . . . , K. The

cost function that quantifies such a mismatch is given by

Ψ
(
Ci, W i

)
= max

k=1,...,K

{
Ψ(k)

(
Ci, W

(k)
i

)}
, (2)

whereW
i
=

{
W

(k)
i ; k = 1, . . . , K

}
and

Ψ(k)
(
Ci, W

(k)
i

)
=

1

N

N∑

n=1

[
β(k)

n − b
(k)
n

(
Ci, W

(k)
i

)]2

. (3)

By substituting (1) into (3) and after simple mathematical manipulations, it turns out that

Ψ(k)
(
Ci, W

(k)
i

)
=

1

N

N∑

n=1

α2
n

[
β

(k)
n

αn
−

Q∑

q=1

δcnqw
(k)
q

(
Ci, W

(k)
i

)]2

. (4)

As shown in [25], once the sub-array configurationCi is set, the weightsW (k)
i =

{
w

(k)
q ; q = 1, . . . , Q

}
,

k = 1, . . . , K, are defined as follows
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w(k)
q =

∑Q
q=1

∑N
n=1 δcnqα

2
nv

(k)
n

∑Q
q=1

∑N
n=1 δcnqα2

n

, q = 1, . . . , Q , k = 1, . . . , K. (5)

wherev(k)
n = β

(k)
n

αn
, n = 1, . . . , N , are thereference weights[25], namely those coefficients

generatingK optimal patterns when using independentBFNs.

In order to optimize (2), let us first defineN reference vectors,V n ∈ R
K , n = 1, . . . , N , as

V n =
{
v(k)

n ; k = 1, . . . , K
}

; n = 1, . . . , N. (6)

Unlike [25], where the Contiguous Partition Method (CPM) has been proposed to synthesize

one compromise pattern (K = 1), we are now aimed at extending theCPM to deal withK

sub-optimal patterns (K − CPM). Unfortunately, the guidelines of [29] suitably exploited in

[25] cannot be applied here since a sorting property for the reference vectorsV n, n = 1, ..., N

does not exist. However, it is still expected thatCopt is the result of the aggregation within

the same sub-array of those elements whose reference vectors are close inRK . Accordingly,

the problem at hand is then reformulated as “searching the best groupingCopt for assigningN

vector points toQ disjoint sub-setsSq, q = 1, ..., Q (Q < N) such that the internal variances

of the subsets, computed as(4), are minima”. State-of-the-art literature refers this problem

as the unsupervised clustering problem [30]. Several techniques have been proposed to deal

with it and theK-means(here referred asQ-means) Clustering Algorithm[31][32] is chosen

hereinafter because of the convergence rate and the simplicity of implementation.

In order to look for the “best” compromise solution, the proposed algorithm works as follows:

• Step 0 -Initial Step

Reference Excitations Selection- The excitations of themain pattern,A, as well as the

reference excitations of the compromise beams,B
(k)
ref , k = 1, . . . , K are chosen;

Initialization - The reference vectors,V n, n = 1, . . . , N , [Fig. 2(a)] are computed and

the iteration counter is initialized (i = 0). If the elementsv(k)
n are not positive, they are

translated of the quantity

γ(k) = min
n=1,...,N

{
v(k)

n

}
(7)
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to obtain the set of translated reference vectorsV̂ n = V n − Γ, n = 1, . . . , N , where

Γ =
{
γ(k); k = 1, . . . , K

}
[Fig. 2(b)]. Successively, the norms of the vectorsV̂ n, n =

1, . . . , N , are computed

rn =

√√√√
K∑

k=1

[
v̂

(k)
n

]2

; n = 1, . . . , N (8)

and their values are sorted on a line [Fig. 2(c)] to determine the listL

L =

{
lj; j = 1, . . . , N ; lj ≤ lj+1; l1 = V̂ n | rn = min

n=1,...,N
(rn) ; lN = V̂ n | rn = max

n=1,...,N
(rn)

}
.

(9)

The initial sub-array configurationC0 is obtained by randomly choosingQ−1 cut points

among theN − 1 inter-element spaces of the listL [Fig. 2(d)], then defining the initial

subsetsS(0)
q =

{
V̂

(0)

nq
; nq = 1, ..., N

(0)
q

}
, q = 1, ..., Q, beingN =

∑Q
q=1N

(0)
q . Moreover,

the Euclidean distance between each couple of reference vectors is computed

d
(
V̂ n, V̂ p

)
=

√√√√
K∑

k=1

[
v̂

(k)
n − v̂

(k)
p

]2

, n = 1, ..., N − 1; p = n + 1, ..., N. (10)

The sequence index is set toj = 1;

• Step 1 -Cost Function Evaluation - The cost function of the current aggregationCi(j)

is evaluated by means of (3),Ψi(j) = Ψ
(
Ci(j), W i(j)

)
, and compared with the best cost

function value obtained up-till now,Ψopt
i−1 = minh=1,...,i−1

{
Ψ

(
Ch, W h

)}
. If Ψi(j) <

Ψopt
i−1 then the optimal cost function is updated (Ψopt

i = Ψi(j)) by also settingCopt
i = Ci(j),

elsewhereΨopt
i = Ψopt

i−1;

• Step 2 -Convergence Check- If i ≥ Imax (Imax being the maximum number of itera-

tions) or the solution is stationary forZmax iterations (i.e.,Ψi = Ψi−z, z = 1, ..., Zmax),

then the optimization process is stopped;

• Step 3 -Sequence Updating- The sequence index is updated (j ← j + 1) and if j ≤ N

then the process jumps to Step 5;

• Step 4 -Iteration Updating - The iteration index is updated (i← i+1) and the sequence

index is reset (j = 1);
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• Step 5 -Border Element Identification - The vectorV̂ n related to the list elementlj is

selected. It is aborder vector, Ṽ n, if

d
(
V̂ n,Ω

)
< min

bV p∈S
i(j)
q ; p=1,...,N

i(j)
q ; p 6=n

[
d

(
V̂ n, V̂ p

)]
, V̂ n ∈ S

i(j)
q (11)

whereΩ is the reference vector given by

Ω = arg

{
min

bV p /∈S
i(j)
q ; p=1,...,N ;q=1,...,Q

[
d

(
V̂ n, V̂ p

)]}
. (12)

and belonging to the subsetSi(j)
Ω , Ω ∈ [1, Q]. If (11) holds true then the algorithm goes

to Step 6. Otherwise, the Step 3 is repeated;

• Step 6 -Aggregation Updating - The border element̃V n is aggregated to the subset

S
i(j)
Ω (and to the corresponding sub-array) to obtain a new trial configurationCi(j). If

Ψ
(
Ci(j)

)
< Ψ (Ci), thenCi = Ci(j) (i.e., Si

q = Si(j)
q , q = 1, ..., Q) and the Step 1 is

iterated. Otherwise, the algorithm goes to Step 3.

3 Numerical Results

In this section, the results of representative simulationsare reported to show the behavior of the

K−CPM synthesis process as well as the performances of the proposed approach. In order to

provide quantitative information, the mainlobe beamwidth,BW , the position of the first pattern

null, θ0, and the peak sidelobe level,SLL, have been evaluated for the compromise patterns

and compared to those of the reference ones. Furthermore, thematching indexes[25]

∆(k) =

∫ π/2

−π/2

∣∣∣
∣∣∣AF (k)

ref (θ)
∣∣∣−

∣∣∣AF (k)
rec (θ)

∣∣∣
∣∣∣ dθ

∫ π/2

−π/2

∣∣∣AF (k)
ref (θ)

∣∣∣ dθ
k = 1, ..., K (13)

have been used to quantify the degree of matching with references. In (13),
∣∣∣AF (k)

ref (θ)
∣∣∣ and

∣∣∣AF (k)
rec (θ)

∣∣∣ are the normalizedk-th reference array pattern and that synthesized with the pro-

posed approach, respectively. For comparative purposes, the solution synthesized with the serial

implementation of theK − CPM is given, as well.

Let us consider a linear array ofN = 2 ×M = 20 elements withd = λ
2

and the generation
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of three beams (K = 2). The main pattern excitationsA = {αm = α−m; m = 1, . . . ,M} have

been set to those of a Dolph-Chebyshev pattern [4] withSLL = −25 dB, while the reference

coefficients for the first compromise pattern,B(1)
ref =

{
β

(1)
m = −β

(1)
−m; m = 1, ...,M

}
, and the

second one,B(2)
ref =

{
β

(2)
m = β

(2)
−m; m = 1, ...,M

}
, have been chosen to afford a Zolotarev

difference pattern [8] withSLL = −30 dB and a Taylor sum pattern [6] withSLL = −25 dB

andn = 4, respectively. The number of sub-arrays has been chosen equal toQ = 3. By virtue

of the symmetries among the excitation coefficients, only half array has been involved in the

synthesis process (m = 1, ...,M).

At the first step of the parallelK−CPM , the reference vectors (6) are computed. Since all the

v
(k)
m terms are positive, it follows that̂V m = V m. The values of the reference vectors and their

norms (8) are reported in Tab. I. Starting from the initial randomly-chosen configuration equal

to C0 = {2, 2, 3, 3, 3, 3, 3, 3, 3, 1}, the clustering is iteratively updated. The evolution of the

sub-array aggregations is shown in Fig. 3 [i = 0 - Fig. 3(a); i = 1 - Fig. 3(b); i = 3 - Fig. 3(c)

andi = 10 - Fig. 3(d)]. The corresponding patterns are reported in Fig. 4 (k = 1 - left column;

k = K = 2 - right column). It is worth noting that the initial aggregation leads to a compromise

difference far from the target [Fig. 4(a)], whereas the second beam is close to the corresponding

reference [Fig. 4(b)]. Such a situation is confirmed by the values of the cost function Ψ
(1)
0 =

2.05 × 10−1 andΨ
(2)
0 = 2.02 × 10−4 in Fig. 5. At the convergence (i = iopt), the trade-off

solution shows in Figs. 4(g)-4(h) is obtained. The synthesized patterns identified by the label

“Π” are shown in Fig. 6(a) (k = 1) and Fig. 6(c) (k = 2) along with the solution from the

serial implementation of theCPM (line “Σ”). The correspondingHW layouts are also given

in Figs. 6(b) and 6(d), as well. For completeness, the sub-array configurations and weights are

listed in Tab. II, whereas the values of the pattern indexes are reported in Tab. III. As it can

be observed, both implementations do not exactly match the reference difference [Fig. 6(a) -

Tab. III (Pattern 1)], while a good fitting is achieved in correspondence with the patternk = 2.

Moreover, the same compromise difference beam (k = 1) is generated by the twoK − CPM

architectures, while the pattern matching for the sum beam [Fig. 6(c)] slightly worsens with the

parallel solution against a significant reduction of the circuit complexity (CΣ = 56 vs.CΠ = 16,

C being the crossing count).

In order to assess the reliability of the proposed strategy,Figure 7 gives some indications on
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the asymptotic behavior of the method performances. More specifically, the values ofΨ(1)

andΨ(2) [Fig. 7(a)] and of the indexes∆(1) and∆(2) [Fig. 7(b)] versusQ are reported for both

implementations. As expected, the plots present a monotonic decreasing behavior and∆(k) → 0

whenQ→M .

The second example (Test 2) deals with the synthesis of a linear array withN = 2 ×M = 12

elements (d = λ
2
) generating a flat-topped main beam and two compromise patterns. The flat-

topped pattern is characterized by ripples within the main lobe region of amplitude±0.5 dB

andSLL = −20 dB. It is afforded by a set of symmetrical real excitations available in [9].

The reference excitations for the first and the second sub-arrayed beams have been chosen to

generate a Zolotarev pattern [8] withSLL = −25 dB and a Dolph-Chebyshev pattern [4] with

SLL = −25 dB. The reference excitations are given in Tab. IV (rows 2-4). The number of

sub-arrays has been set toQ = 4.

The final aggregations and the corresponding weights synthesized with the proposed parallel

K −CPM approach areCopt = {3, 4, 1, 2, 3, 4},W (1) = {−13.29, −4.73, 0.28, 1.80}, and

W (2) = {−10.30, −3.15, 1.00, 2.09}, respectively. In this case, the same result is obtained by

the serial approach as confirmed by the value of the cost function as well as from the matching

indexes (Tab. V). The convergence patterns are shown in Fig.8 along with theHW layouts of

both architectures (CΣ = 39 vs. CΠ = 12). As far as the pattern performance are concerned

(Tab. V), the sum pattern presents aSLL = −19.46 dB of almost5 dB above the value of the

reference beam. Moreover,BW = 9.29 [deg] vs. BW ref = 8.26 [deg]. A better matching has

been yielded for the difference pattern sinceSLL = −22.27 dB vs.SLLref = −24.76 dB and

BW = 9.97 [deg] vs.BW ref = 10.57 [deg].

The last test case (Test 3) is concerned with the synthesis of a large linear array havingN =

2×M = 100 elements (d = λ
2
) with a compromise feed network ofQ = 8 sub-arrays. The main

pattern has been set to a Taylor pattern withSLL = −35 dB andn = 6 [6]. Two reference dif-

ference patterns have been chosen, namely a modified Zolotarev pattern withSLL = −30 dB

andn = 5 [33] and a difference pattern providing maximum directivity whose excitations have

been computed as proposed in [34].

The sub-array configuration and the corresponding weights synthesized with theK − CPM

approaches are reported in Tab. VI. A pictorial representation in the reference vector space of
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the element aggregation is shown in Fig. 9. As expected, the searching procedure is able to

aggregate in the same sub-array the array elements whose reference vectors are closer. In Fig.

10, the patterns radiated by the parallelK − CPM solution are shown. For the sake of clarity,

only the envelopes are plotted.

Figure 11 compares theK − CPM patterns with the reference ones in correspondence with

k = 1 [Fig. 11(a)] and k = 2 [Fig. 11(b)], respectively. As it can be observed, the parallel

solution gets worse than the serial implementation dealingwith the difference pattern (k = 1

- Tab. VII) when the matching with the reference one is also not very accurate [Fig. 11(a)]

especially outside the angular region close to the mainlobe(i.e.,θ ≥ 10o). On the other hand, it

is worthwhile to notice the strong reduction of the layout complexity obtained with the the par-

allel architecture sinceCΣ = 150 vs.CΠ = 50. As regardsk = 2 [Fig. 11(b)], bothK−CPM

patterns have the same pattern features of the reference beam (i.e., SLL = −12.71 dB and

BW = 0.87 [deg]) even though the maximum directivity slightly reduces (Dref
max = 17.84 dB

vs.Dmax = 17.79 dB).

As far as the computational burden is concerned, Table VIII summarizes the main issues:U

(dimension of the solution space),iopt (number of iterations),ψopt (number of cost function

evaluations), andT (CPU time). Despite the wide dimension of the solution space withU ≃

1.43 × 1045 admissible alternatives, the process for defining theΠ layout takes justiopt = 6

iterations and it requiresψopt = 258 cost function evaluations performed in onlyT = 0.86 [sec].

In such a case, the extra computation time with respect to theserial implementation (TΠ

TΣ
≃ 5.6)

is mainly related to the sorting process of the reference vectors.

4 Conclusions

In this paper, an innovative approach for the synthesis of multiple-beam sub-arrayed antennas

has been presented. The solution procedure is based on an excitation matching algorithm aimed

at defining an optimal pattern through a set of independent excitations and synthesizing multi-

ple compromise beams by using a common sub-array feed network and independent sub-array

weights for each pattern. A fast searching procedure exploiting a suitable integration of the

CPM with a customized version of theK-means clustering algorithm has been used to effec-

tively sample the space of admissible solutions. The obtained results have proved the feasibility
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of the proposed method as well as its reliability in fitting multiple reference patterns with sat-

isfactory performances and a limited circuit complexity. The computational efficiency of the

approach has been pointed out dealing with large linear arrays, as well.
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FIGURE CAPTIONS

• Figure 1. Sketch of the multi-beam sub-arrayed antenna: (a) serial architecture and (b)

parallel architecture.

• Figure 2. Parallel K − CPM - Synthesis Process(N = 12, K = 2, Q = 3). (a)

Reference vectorsV n =
{
v

(k)
n ; k = 1, ..., K

}
, n = 1, ..., N , (b) translated reference

vectorsV̂ n =
{
v̂

(k)
n ; k = 1, ..., K

}
, n = 1, ..., N , (c) generation of the listL of the

norm values of the references vectors, and (d) element aggregation and definition of the

sub-array configuration,C.

• Figure 3. Parallel K − CPM Analysis(Test 1:N = 20, K = 2, Q = 3) - Sub-array

configuration synthesized at (a) i = 0, (b) i = 1, (c) i = 3 and (d) i = iopt = 10.

• Figure 4. Parallel K − CPM Analysis(Test 1:N = 20, K = 2, Q = 3) - Relative

power patterns synthesized at iteration (a)(b) i = 0, (c)(d) i = 1, (e)(f ) i = 3 and (g)(h)

i = iopt = 10. Difference compromise pattern,k = 1 (left column) and sum compromise

pattern,k = 2 (right column).

• Figure 5. ParallelK − CPM Analysis(Test 1:N = 20, K = 2, Q = 3) - Behavior of

the cost functionΨ and of the termsΨ(1) andΨ(2) during the iterative synthesis process

(i: iteration index).

• Figure 6. K − CPM Multi-Beam Synthesis(Test 1:N = 20, K = 2, Q = 3) - Patterns

synthesized with theK − CPM techniques atk = 1 (a) andk = 2 (c). Array layouts:

(b) serial architecture and (d) parallel architecture.

• Figure 7. K − CPM AsymptoticAnalysis(N = 20, K = 2) - Behavior of (a) the cost

function termsΨ(1) andΨ(2) and of (b) the matching indexes∆(1) and∆(2) versusQ

(Q = 2, ..., 10).

• Figure 8. K − CPM Multi-Beam Synthesis(Test 2: N = 12, K = 2, Q = 4) -

Optimal and compromise patterns (a). Layouts derived from the serial approach (b) and

the parallel apporoach (c).
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• Figure 9. K − CPM Multi-Beam Synthesis(Test 3: N = 100, K = 2, Q = 8) -

Representation in the reference vector space of the sub-array configurations synthesized

with theK − CPM techniques.

• Figure 10. ParallelK −CPM Multi-Beam Synthesis(Test 3:N = 100,K = 2,Q = 8)

- Main and compromise patterns (k = 1, 2).

• Figure 11. K − CPM Multi-Beam Synthesis(Test 3: N = 100, K = 2, Q = 8)

- Reference and compromise patterns synthesized with theK − CPM techniques: (a)

k = 1 and (b) k = 2.

TABLE CAPTIONS

• Table I. ParallelK − CPM Multi-Beam Synthesis(Test 1:N = 20, K = 2, Q = 3) -

Reference vectors and their norms.

• Table II. K −CPM Multi-Beam Synthesis(Test 1:N = 20,K = 2,Q = 3) - Sub-array

configurations and sub-array weights.

• Table III. K − CPM Multi-Beam Synthesis(Test 1: N = 20, K = 2, Q = 3) -

Performances indexes.

• Table IV. ParallelK − CPM Multi-Beam Synthesis(Test 2: N = 12, K = 2, Q = 4) -

Reference excitations and reference vectors.

• Table V. K − CPM Multi-Beam Synthesis(Test 2:N = 12, K = 2, Q = 4) - Perfor-

mances indexes.

• Table VI. K − CPM Multi-Beam Synthesis(Test 3: N = 100, K = 2, Q = 8) -

Synthesized sub-array configurations and weights.

• Table VII. K − CPM Multi-Beam Synthesis(Test 3: N = 100, K = 2, Q = 8) -

Performances indexes.

• Table VIII. K − CPM Multi-Beam Synthesis(Test 3:N = 100, K = 2, Q = 8) -

Computational indexes.
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V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10

v
(1)
m 0.1798 0.5275 0.8401 1.0973 1.2818 1.3818 1.3907 1.3074 1.1367 0.5742

v
(2)
m 1.0000 0.9998 0.9972 0.9896 0.9761 0.9609 0.9552 0.9811 1.0790 0.6397

rm 1.0160 1.1304 1.3040 1.4776 1.6112 1.6831 1.6871 1.6346 1.5673 0.8586
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Π− Approach

C 1 2 2 3 3 3 3 3 3 2

W (1) 0.1798 0.6601 1.2549

W (2) 1.0000 0.9421 0.9807

Σ−Approach− 1st pattern

C 1 2 2 3 3 3 3 3 3 2

W 0.1798 0.6601 1.2549

Σ− Approach− 2nd pattern

C 2 2 2 2 3 3 3 3 2 1

W 0.6397 0.9682 1.0024

Tab. II - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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Pattern (1) BW [deg] θ1 [deg] SLL [dB] Ψ(1) ∆(1)

Π− Approach 5.12 13.50 −18.73 0.8263× 10−1 0.5321× 10−1

Σ−Approach 5.12 13.50 −18.73 0.8263× 10−1 0.5321× 10−1

Reference [8] 5.15 12.42 −29.78 − −

Pattern (2) BW [deg] θ1 [deg] SLL [dB] Ψ(2) ∆(2)

Π− Approach 5.84 7.38 −23.73 0.3864× 10−1 0.2507× 10−1

Σ−Approach 6.08 7.83 −25.38 0.1129× 10−2 0.4083× 10−2

Reference [6] 6.06 7.74 −25.29 − −

Tab. III - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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m 1 2 3 4 5 6

am [9] 1.0000 0.4577 −0.0838 −0.2033 −0.0278 0.1727

β
(1)
m [8] 0.2847 0.7609 1.0000 0.9609 0.7135 0.4763

β
(2)
m [4] 1.0000 0.9314 0.8051 0.6405 0.4615 0.4327

v
(1)
m 0.2847 1.6624 −11.9332 −4.7263 −25.6673 2.7578

v
(2)
m 1.0000 2.0350 −9.7064 −3.1504 −16.6001 2.5055

rm 31.3575 33.0788 15.4121 24.8884 0.0000 34.2496

Tab. IV - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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Pattern (1) BW [deg] θ1 [deg] SLL [dB] Ψ(1) ∆(1)

Π− Approach 9.29 23.58 −19.46 0.1626 0.5654× 10−1

Σ−Approach 9.29 23.58 −19.46 0.1626 0.5654× 10−1

Reference [8] 8.26 19.26 −24.51 − −

Pattern (2) BW [deg] θ1 [deg] SLL [dB] Ψ(2) ∆(2)

Π− Approach 10.59 14.22 −22.27 0.2385× 10−1 0.1624

Σ−Approach 10.59 14.22 −22.27 0.2385× 10−1 0.1624

Reference [4] 9.97 12.72 −24.76 − −

Tab. V - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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Π− Approach

C 11111112222223333334444445555556666677777888888888

W (1) 0.2647 0.7403 1.1231 1.4276 1.6246 1.6978 1.6998 1.2174

W (2) 0.1584 0.4691 0.7983 1.2030 1.7361 2.4330 3.3103 4.4810

Σ−Approach− 1st pattern

C 11111222223333444445555666667777778888888888888888

W 0.1540 0.4566 0.7130 0.9473 1.1620 1.3440 1.5162 1.6659

Σ− Approach− 2nd pattern

C 11111112222223333334444445555556666677777888888888

W 0.1584 0.4691 0.7983 1.2030 1.7361 2.4330 3.3103 4.4810

Tab. VI - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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Pattern (1) BW [deg] θ1 [deg] SLL [dB] Dmax [dB] Ψ(1) ∆(1)

Π− Approach 1.09 2.67 −24.19 −17.05 0.7023× 10−2 0.1224× 10−1

Σ−Approach 1.10 2.67 −29.35 −17.05 0.1997× 10−2 0.6136× 10−2

Reference [33] 1.09 2.66 −30.72 −17.08 − −

Pattern (2) BW [deg] θ1 [deg] SLL [dB] Dmax [dB] Ψ(2) ∆(2)

Π− Approach 0.87 1.85 −12.71 −17.79 0.7023× 10−2 0.8230× 10−2

Σ−Approach 0.87 1.85 −12.71 −17.79 0.7023× 10−2 0.8230× 10−2

Reference [34] 0.86 1.85 −12.71 −17.84 − −

Tab.
V

II-
L.M

anica
etal.,“S

yn
th

esis
o

fM
u

lti-B
eam

S
u

b
-A

rrayed
A

n
ten

n
as

...”

3
6



U iopt ψopt T [sec]

Π− Approach 1.4272× 1045 6 258 0.86

Σ− Approach− Pattern (1) 1.4272× 1045 11 125 0.08

Σ− Approach− Pattern (2) 1.4272× 1045 5 70 0.07

Tab. VIII - L. Manica et al., “Synthesis of Multi-Beam Sub-Arrayed Antennas ...”
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