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Stohasti Ray Propagation in Strati�ed Random Lat-ties
Anna Martini, Massimo Franeshetti, and Andrea Massa

AbstratRay propagation in strati�ed semi-in�nite perolation latties onsisting of a sues-sion of di�erent uniform-density layers is onsidered. Assuming that rays undergospeular re�etions on the oupied sites, the propagation depth inside the mediumis analytially estimated in terms of the probability that a ray reahes a presribedlevel before being re�eted bak in the above empty half-plane. Numerial Monte-Carlo-like experiments validate the proposed solution.
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1 IntrodutionIn the last years, wave propagation in random media has gained an inreasing attentionmostly due to the huge amount of pratial problems where propagation environmentsare suitable to be desribed by stohasti models rather than being deterministiallyharaterized. For instane, let us think about appliations arising in the �eld of wirelessommuniation [1℄[2℄[3℄ and remote sensing (see [4℄ and the referenes ited therein).In suh a framework, we study eletromagneti wave propagation in a semi-in�nite per-olation lattie [5℄ of square sites, modeling a random distribution of satterers. Theeletromagneti soure is assumed to be external to the half-plane and it radiates amonohromati plane wave impinging on the lattie with a known angle θ. Sites areassumed to be large with respet to the wavelength. This allows to model the inidentwave in terms of parallel rays. Suh rays undergo speular re�etion on obstales, whileother eletromagneti interations are negleted. The aim is estimating the probabilitythat a single ray reahes a presribed level k inside the lattie before being re�eted bakin the above empty half-plane, Pr {0 7−→ k ≺ 0}.This problem was addressed for the �rst time in [1℄, where the authors onsidered thease of a uniform perolation lattie, where eah ell may be oupied with a knownprobability q. To ensure propagation, suh oupany probability is assumed to be lowerthan a presribed value qc = 1 − pc, pc being the so-alled perolation threshold [5℄(pc ≈ 0.59275 for the two-dimensional ase). Ray propagation was modeled in terms ofa stohasti proess de�ned as the sum of suessive ray jumps. The �nal result wasexpressed as a ombination of two terms: the probability mass funtion Pr {r0 = i} ofthe �rst jump r0 and the probability Pr {i 7−→ k ≺ 0 |r0 = i} that a ray reahes level kbefore esaping in the above empty half-plane given the level where the �rst re�etionours. The latter term was estimated by applying the theory of the Martingale randomproesses [6℄ and the so alled Wald approximation.Extension of this approah to the inhomogeneous ase has been proposed in [7℄[8℄, wherethe satterers distribution has been desribed by a one-dimensional obstales density pro-�le, f(j) q(j), j being the row index. Numerial experiments and mathematial onsider-ations have shown that the analytial solution holds true in orrespondene of obstales3



density pro�les with small variations. A little though shows that this is due to the fatthat ray jumps following the �rst one are onsidered as a single mathematial entity,i.e., Pr {i 7−→ k ≺ 0 |r0 = i}. Thus, suh a formulation is not able to faithfully desribe
Pr {0 7−→ k ≺ 0} in orrespondene with abrupt variations in the density pro�le q(j).This letter is aimed at overoming suh a drawbak by providing an ad-ho formulation fordesribing propagation in strati�ed random latties onsisting of a suession of di�erentuniform-density layers. The work is organized as follows. In Setion 2, the mathematialformulation is presented. Setion 3 provides some numerial experiments performed onsimple test ases. Final omments and onlusions are drawn in Setion 4.2 Problem Statement and Mathematial FormulationLet us onsider a strati�ed semi-in�nite perolating lattie desribed by the followingobstales density distribution

q(j) =















































q1 l0 = 0 < j ≤ l1,

q2 l1 < j ≤ l2,...
qn ln−1 < j ≤ ln,... (1)

where q(j) = 1− p(j) is the probability that a site is oupied at level j. In other words,the medium is a suession of layers {Ln; n ≥ 1}, eah one made up of ln − ln−1 levelswith oupany probability qn. An example of a strati�ed random lattie with three layersand the relative obstales density distribution are shown in Figure 1. For the onsideredon�guration, our aim is to �nd the probability Pr {0 7−→ k ≺ 0}.In eah uniform layer belonging to the strati�ed lattie, the propagation is desribedthrough the model proposed in [1℄. In partiular, the probability that a ray traveling withpositive diretion in level (ln−1 + 1) reahes level ln before being re�eted bak in level
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(ln−1 + 1), Pn=̂ Pr {(ln−1 + 1) 7−→ ln ≺ (ln−1 + 1)}, turns out to be [1℄,
Pn =











1 ln = ln−1 + 1,

pn

qenNn

[

1 − pNn

en

]

ln > ln−1 + 1,
(2)where pen

= 1 − qen
= ptan θ+1

n is the e�etive probability a ray freely rosses a levelwith oupany probability qn and Nn = (ln − ln−1 − 1). Numerial experiments andmathematial onsiderations show that (2) satisfatorily performs for inidene angle θnot too far from 45o and for dense propagation media [9℄.Now, in order to desribe propagation in the whole strati�ed lattie, the probabilities
Pn of eah single layer (n ≥ 1) must be onveniently ombined. If we assume that thelevel k belongs to the layer LK , i.e., lK−1 < k ≤ lK , K ≥ 1, our problem is formallydesribed by the Markov hain [10℄ depited in Figure 2, where states j+ and j− denote aray traveling in level j with positive and negative diretion, respetively, and Qn=̂1−Pn.With referene to the Markov hain, we state our main result as follows (see Appendix Afor a detailed proof)

Pr {0 7−→ k ≺ 0} =
p1

1
P1

+ p1

K
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

, (3)
where PK is evaluated aording to (2) by replaing lK with k.An observation is appropriate. When K = 1, we are dealing with the homogeneous aseand equation (3) takes the form

Pr {0 7−→ k ≺ 0} = p1P1 =











p1, k = 1,

p2
1

h

1−p
(k−1)
e1

i

qe1 (k−1)
, k > 1.

(4)Suh a result is a slightly di�erent version of that in [1℄, sine it takes into aount thata ray traveling with negative diretion inside level 1 surely esapes from the grid beausethere are not any oupied horizontal faes between level 1 and level 0. As a matterof fat, the approah in [1℄ is �ne in evaluating provided that x and y, and the levelsbetween them, have the same oupany probability beause Pr {i 7−→ k ≺ 0 |r0 = i} is5



estimated on the basis of a distane riterion. Consequently, sine in our on�gurationlevel 0 is empty, we an not diretly apply [1℄ for omputing Pr {0 7−→ k ≺ 0}. Therefore,
Pr {0 7−→ k ≺ 0} is evaluated as the produt of two terms, the probability p1 to enter the�rst level and the probability P1 = Pr {x 7−→ y ≺ x}⌋x=1, y=k omputed as in [1℄.In passing and as expeted, it an be notied that (3) does not redue to (4) in the limitase when pn = p, n = 1, ..., K sine (3) is not an extension of the result in [1℄ (where theray jumps following the �rst one are evaluated through an approximation on the basis ofa distane riterion), but it is obtained by mathematially binding in the Markov haindepited in Figure 2 the results onerned with the uniform ase.3 Numerial ValidationIn order to validate the proposed solution, an exhaustive set of numerial experimentshas been arried out taking into aount two-, three- and four-layers senarios. In thefollowing, the results of seleted representative test ases are reported. For omparisonpurposes, the propagation depth has been estimated in the �rst K = 32 levels by Monte-Carlo-like ray-traing experiments by following the proedure detailed in [1℄.In order to estimate the e�etiveness of the proposed model, let us de�ne the followingerror indexes, namely the predition error δk

δk ,
|PrR {0 7−→ k} − PrP {0 7−→ k}|

max
k

[PrR {0 7−→ k}]
× 100, (5)and the mean error 〈δ〉

〈δ〉 ,
1

Kmax

Kmax
∑

k=1

δk, (6)where the sub-sripts R and P indiate the values estimated with the referene approahand through (3), respetively.Firstly, we �x the inidene angle, θ = 45o, and we analyze how the obstales densityat eah layer and the size of the variation in the oupation probability value betweenadjaent layers, namely Sn,n+1 = |qn − qn+1|, a�et the performanes. With refereneto Table I, where mean error values relative to single-step pro�les are reported, it anbe observed that the e�etiveness of the proposed solution does not depend on S1,2. As6



an example, let us onsider single-step pro�les having q1 = 0.35 (last row in Tab. I).The mathing between referene data and the reonstrution obtained by means of (3) isgood whatever S1,2 and it is omparable with that of the uniform ase. The apabilityof the proposed approah in arefully modeling the behavior of Pr {0 7−→ k ≺ 0} is alsoevident for other single-step pro�les as on�rmed by the values of the error index (Tab.I). For a �xed value of q1, the mean error dereases when q2 inreases, independentlyfrom S1,2. Suh an event points out that the predition auray is a�eted only bythe obstales density at eah layer. In partiular, more dense the layers are, lower themean error is. This behaviour is fully preditable, sine the auray of (2) - the buildingblok in deriving the �nal result - inreases when the oupany probability value tendsto the perolation threshold [9℄. Suh a trend, veri�ed for single-step pro�les, is furtheron�rmed when random latties with a higher number of layers are taken into aount.With referene to Figure 3, where plots of Pr {0 7−→ k ≺ 0} for three-layers pro�les with�xed q1 = q3 = 0.15 are reported, it an be observed that mathing between refereneand estimated data gets better for higher q2, although Sn,n+1 inreases (S1,2 = S2,3 = 0.1and S1,2 = S2,3 = 0.2 when q2 = 0.05 and q2 = 0.35, respetively). This is on�rmed bythe mean error values (〈δ〉q2=0.05 = 3.13% vs. 〈δ〉q2=0.35 = 0.8%). In Figure 4, we omparethe results relative to two four-layers pro�les, the former very sparse (q1 = q3 = 0.15and q2 = q4 = 0.05) and the latter very dense (q1 = q3 = 0.35 and q2 = q4 = 0.25).As expeted, we get better performanes for the more dense pro�le, as on�rmed by themean error values (〈δ〉 = 2.98% vs. 〈δ〉 = 0.7%).Now, the e�ets of the inidene angle θ on the performanes of (3) are analyzed. Towardsthis end, let us de�ne the global mean error ∆,
∆ ,

1

Γ

Γ
∑

s=1

〈δ〉s , (7)
Γ being the total number of senarios and 〈δ〉s the mean error relative to the s−thdistribution. Figure 5 plots ∆ obtained by onsidering the whole set of three- and four-layers on�gurations that an be built by varying the oupation probability of eahlayer {qn; n = 1, ..., K} between 0.05 and 0.35 with a step of 0.1. As expeted [9℄, weobserve that in both ases results get worse as θ diverges from 45o. In partiular, ∆7



ranges from {∆}θ=45o = 1.35% up to {∆}θ=15o = 5.52% and from {∆}θ=45o = 1.28%up to {∆}θ=15o = 5.54% for three- and four-layers pro�les, respetively. Moreover, itis interesting to observe that the plots onerned with three- and four-layers senariosalmost overlap. Suh an event indiates that, on average, the auray of the approah isnot a�eted by the number of layers taken into aount.4 ConlusionsRay propagation in strati�ed half-plane random latties illuminated by a monohromatiplane wave that undergoes speular re�etions on the oupied sites has been studied.We have estimated the penetration depth by mathematially binding in a Markov hainresults relative to uniform latties [1℄, thus overoming the limits of the solution presentedin [7℄ when dealing with strati�ed pro�les [9℄.The proposed approah has been validated by means of omputer-based ray-traing ex-periments showing that the proposed solution satisfatorily performs in desribing thebehavior of Pr {0 7−→ k ≺ 0} when abrupt variations in the obstales density pro�les o-ur. As a matter of fat, the predition auray is a�eted neither by the size of thedensity variation nor by the number of suh variations (i.e., the number of layers of thelattie). On the other hand, the same limitations of the solution relative to the uniformase [9℄, still remain (i.e., better preditions turn out in orrespondene with dense mediaand inidene angles near to 45o).
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Appendix AIn this Setion, we prove (3) by indution.The ase K = 1 has been disussed at the end of Setion 2. Thus, we need to show that(3) holds true if it holds for (K−1). Towards this end, by making referene to the Markovhain depited in Figure 2, we express Pr {0 7−→ k ≺ 0} as the produt of three terms
Pr {0 7−→ k ≺ 0} = Pr {A}Pr {B}Pr {C} (8)where

Pr {A} = Pr
{

0+ 7−→ l+K−1 ≺ 0−
}

, (9)
Pr {B} = Pr

{

l+K−1 7−→ (lK−1 + 1)+ ≺ 0−
}

, (10)
Pr {C} = Pr

{

(lK−1 + 1)+ 7−→ k ≺ 0−
}

. (11)Let us onsider Pr {C}. By observing the Markov hain, we have
Pr {C} = PK + QK Pr

{

(lK−1 + 1)− 7−→ (lK−1 + 1)+ ≺ 0−
}

Pr {C} , (12)and aordingly,
Pr {C} = PK

1−QK Pr{(lK−1+1)− 7−→(lK−1+1)+≺0−}

= PK

PK+QK Pr{(lK−1+1)− 7−→0−≺(lK−1+1)+}
,

(13)the last equality following from mutual exlusivity. Now, it an be proved [8℄ that, what-ever level j inside the lattie we are onsidering,
Pr

{

j− 7−→ 0− ≺ j+
}

=
Pr {0+ 7−→ j+ ≺ 0−}

p(j)
, (14)

p(j) being the probability a site is free at level j, and aordingly
Pr {C} = pKPK

pKPK+QK Pr{0+ 7−→(lK−1+1)+≺0−}

= pKPK

pKPK+QK Pr{A}Pr{B}
.

(15)
9



As far as Pr {B} = Pr
{

l+K−1 7−→ (lK−1 + 1)+ ≺ 0−
} is onerned, by following similarreasoning as in getting Pr {C}, we obtain

Pr {B} = pK + qK Pr
{

l−K−1 7−→ l+K−1 ≺ 0−
}

Pr {B} =

pK + qK

[

1 − Pr{A}
pK−1

]

Pr {B}
(16)and thus,

Pr {B} =
pK−1pK

pK−1pK + qK Pr {A}
. (17)By applying to (8), (15), and (17), after some algebra we have

Pr {0 7−→ k ≺ 0} =
1

1
Pr{A}

+ 1−PK

pKPK

+ qK

pK−1pK

(18)
Now, our main result (3) holds true for whatever k belonging to layer LK−1. Thus, itholds true also for k = lK−1 and aordingly we an write

Pr {A} =
p1

1
P1

+ p1

K−1
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

. (19)
By substituting (19) into (18), we simply get our �nal result (3).
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Figure Captions
• Figure 1. Sketh of ray propagation in a three layers random lattie (left-handside) and the obstales density distribution relative to the grid (right-hand side).
• Figure 2. Markov hain modeling ray propagation towards level k.
• Figure 3. Three-layers obstales density pro�le with l1 = 8, l2 = 16 and q1 =

q3 = 0.15 - Estimated values of Pr {0 7−→ k ≺ 0} versus k when θ = 45o for (a)
q2 = 0.05 and (b) q2 = 0.35. Crosses denote referene data, while solid line desribesthe predition obtained by (3).

• Figure 4. Four-layers obstales density pro�les with l1 = 8, l2 = 16 and l3 = 24- Estimated values of Pr {0 7−→ k ≺ 0} versus k when θ = 45o for (a) a sparsepro�le (q1 = q3 = 0.15 and q2 = q4 = 0.05) and (b) a dense pro�le (q1 = q3 = 0.35and q2 = q4 = 0.25). Crosses denote referene data, while solid line desribes thepredition obtained by (3).
• Figure 5. Three-layers obstales density pro�les (l1 = 8 and l2 = 16) and four-layers obstales density pro�les (l1 = 8, l2 = 16 and l3 = 24) - Global mean error ∆versus the inidene angle θ.
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Table Captions
• Table I. Step pro�le - Mean error 〈ϕ〉 for di�erent values of q1 and q2 when θ =

45o. For ompleteness, values relative to uniform on�gurations obtained by (4) arereported in square brakets on the diagonal.
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q1�q2 0.05 0.15 0.25 0.35

0.05 [3.87] 2.83 1.64 0.53

0.15 3.06 [4.09] 1.86 0.88

0.25 2.31 2.10 [1.93] 0.81

0.35 0.47 0.50 0.31 [0.56]

Tab. I - A. Martini et al., �Stohasti Ray Propagation ...�
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