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A numerical approach for the evaluation of the nonlinear effects
on the attenuation constant in high temperature
superconducting transmission lines.
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Abstract. Superconducting materials exhibit an experimentally verified nonlinear dependence
with respect to the magnetic field. In this paper, this nonlinearity is taken into account in the
evaluation of the attenuation constant in propagating structures of pratical usage. Quadratic and
cubic nonlinearities are considered and an iterative numerical procedure is applied to calculate the
attenuation constant. The nonlinearity in the penetrationdepth is also considered. In the results
section, some typical structures are investigated. In particular, parallel-plane transmission lines filled
by dielectric materials, microstrip lines, and striplinesare considered. Comparisons with exsisting
results show that this nonlinear behavior cause significantchanges in the attenuation parameters.

1. Introduction

In the past years there has been a growing interest in
superconducting materials and their applications. In par-
ticular, the discovery of high-Tc superconductors strongly
changed the possibility of using these materials in the de-
sign of advanced devices for microwave electronics and
other engineering applications [Van Duzer and Turner,
1981]. Since superconducting materials are character-
ized by a very small resistance, the design and realiza-
tion of typical propagating structures (e.g, stripline, mi-
crostripline, etc.) by using these materials result in a
great reduction of loss; in particular, the attenuation fac-
tors turn out to be some degrees lower comparing with
those of normal conductors. For further developments
in this area, it is necessary to accurately model the elec-
tromagnetic behaviour of high temperature superconduct-
ing (HTS) materials and, in particular, to devise method-
ologies for studing propagating structures which must be
able to take into account this behaviour. In this respect, in
the field of classical guided propagation, many efficient
numerical approches have been recently proposed. For
example, a method to calculate the resistance and induc-
tance of trasmission lines with rectangular cross sections
[Weeks et al.,1991] is based on the network theory and
permits to calculate the frequency-dependent resistance
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and inductance per unit length matrices for transmission-
line systems consisting of conductors with rectangular
cross sections. The above method was extended in or-
der to calculate resistance and inductance for a system
of coupled superconducting transmission lines [Sheen et
al., 1991]. This goal has been accomplished by using
the constitutive relation between the current density in
the superconducting lines and the electric field, modeled
by using the two fluid model. Nonlinear propagating
structure have also widely numerically and experimen-
tally studied (the reader can be referred to [Lee and Itoh
1989;El-Ghazaly et al.1992;Oates et al.,1991;Choud-
hury et al., 1997] and references therein). Although most
of the proposed approaches consider linear propagation
only, nonlinear effects should be taken into account if
the propagating structure have to operate under certain
conditions [Van Duzer and Turner,1981], in particular,
when the magnetic field is high. The nonlinear effects
were experimentally verified and further studied in sev-
eral works [Oates et al.,1991;Hein et al.,1997; Ma and
Wolff, 1996; Talanov et al.,1999], in particular there has
been a debate about the effective degree of nonlinearity,
expecially in the light of the recent improved film quality
and depending of the patterned and unpatterned charac-
ter of the film. In several papers, the nonlinear model
was represented by a quadratic nonlinearity, whereas in
other studies, different nonlinear behaviors were found
to be suitable [Ma and Wolff,1996 (a); Ma and Wolff,
1996 (b)], especially in the presence of high magnetic
fields. A quadratic nonlinearity was also assumed in a
computational approach [Caorsi et al.,2001] devised for
studying the interaction between an incident wave and a
superconducting cylinder modeled by a negative permit-
tivity. In the same paper, a preliminary result concerning
the guided propagation has been reported with reference
to the same degree of nonlinearity. In the present work,
a numerical iterative procedure able to take into account
the nonlinear effects on systems of multisuperconduct-
ing transmission line is presented. Since the main effect
related to the nonlinearity with respect to the magnetic
field is an increasing in the surface resistance of the super-
conductor, the present paper is focused on the evaluation
of the attenuation constants of several guided structures
of practical interest, for which the nonlinear behavior
of the superconductors is rigorously taken into account
and modeled by using some results derived from exper-
imental data. The mathematical formulation starts from
the two fluids model and is developed in the framework
of the classic electrodynamics [Mei and Liang,1991],
which allows one to consider a superconducting mate-
rial as a material with a complex conductivityσc. Dif-
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ferent nonlinear behaviors (resulting from experimental
analyses) can be easily incorporated into the model. In
the following second- and third-order relations describ-
ing the nonlinearity versus the magnetic field are used
and the results are compared. Moreover, the effects as-
sociated with changes in the penetration depthλ, due to
the magnetic field, are taken into account, too. Although
the rigorous treatment of the nonlinearity would involve
the use of constitutive relationships written in terms of
Volterra series [Censor, 1985; Censor, 1987], by using an
approximation similar to the one involved in the so called
distorted-wave Born approximation, an iterative approach
for the computation of the attenuation factor is developed.
Finally, some results are shown concerning guiding struc-
tures as parallel-plane transmission lines filled by dielec-
tric materials, microstrip lines and striplines.

2. Mathematical Formulation

2.1. Parameters of a multiconductor transmission
line system

Let us consider the propagating structure shown in Fig-
ure 1, which is constituted byM+1 superconductors, one Figure 1.
of them is used as reference and the others are used as sig-
nal lines. The cross section of each line is subdivided into
segments and the current flowing into each segment is
considered to be uniformly distributed over the cross sec-
tion of the segment. The generic segment is indicated by
n, whereas a segment of the reference conductor is cho-
sen as reference and indexed as 0. In this segment flows
the return current, which is the sum of all the currents in
all the otherN segments:

itot =
N

∑
j=1

i j (1)

By taking into account the nonlinearity with respect to the
magnetic field, a nonlinear complex electric conductivity
can be defined as follows:

σnl
c (H) = σlin +L(H) (2)

whereL(H) is a nonlinear operator depending on the as-
sumed model for the nonlinearity,σlin is the linear part
of σnl

c , which, according to the two fluid model [Mei and
Liang, 1991], can be expressed as

σlin = σ1(T)− j
1

ωµ0λ2(T)
(3)

whereω is the angular frequency,µ0 is the magnetic per-
meability, T is the temperature(K), andλ is the penetra-
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tion depth of the superconductor. Each segment is char-
acterized by a complex nonlinear resistance given by:

rnl
j (H) =

1
σnl

cj
(H)A j

(4)

where the subscriptj refers to the j-th segment of areaA j

(cross section), andσnl
cj

(H) is the nonlinear conductivity
of the j-th segment (assumed to be constant). In this de-
velopment we follow the approach described in [Weeks et
al., 1979] for normal conductors, and extended in [Sheen
et al., 1991] to deal with superconducting materials. In
particular, a resistance matrix is constructed, whose ele-
ments are given by:

r jh(H) = Re

(

1
σnl

c0
(H)A0

+ δ jh
1

σnl
cj

(H)A j

)

(5)

whereh and j are the index of two generic segments,
δ jh = 1 if h = j and δ jh = 0 otherwise. Analogously,
the inductance matrix is given by:

l jh(H) = l (k)jh (H)+ (l jh + l j0+ l0h+ l00)
(m) =

= l (k)jh (H)+ l (m)
jh (6)

wherel (k)h j is the kinetic contribution given by:

l (k)
jh (H) =

1
ω

Im

(

1
σnl

c0
(H)A0

+ δ jh
1

σnl
cj

(H)A j

)

(7)

and the other termsl jh can be computed as described in
details in [Weeks et al.,1979; Sheen et al.,1991; Tsuk
and Kong,1991]. At this point, the impedance matrix
[z] of dimensionsN×N, whose elements are given by
zjh = r jh(H)+ jωl jh(H), is computed and inverted in or-
der to obtain the admittance matrix[y(H)] = [z(H)]−1.
In this way, following [Sheen et al.,1991], it is possi-
ble to compute the array containing the values of the cur-
rent flowing in the segments,i, and, finally, the matrix
impedance of the transmission structure[Z(H)] (dimen-
sionsM ×M). This matrix can be derived from the ad-
mittance matrix[Y(H)], whose elements are given by:

Ymn(H) =
Nm f

∑
j=Nmi

Nn f

∑
h=Nni

y jh(H) (8)

whereNpi andNp f denote the first segment and the last
segment of the p-th conductor, respectively;y jh(H) is the
element of matrix[y(H)]. Finally, the attenuation con-
stant can be computed by using the following relation in
which the conductance is neglected:

αnl(H) = Re[
√

(R(H)+ jωL(H)) · jωC(H)] (9)
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whereR(H), L(H) are the resistance and the inductance
of the transmission line derived from the real and imag-
inary parts of the impedance matrix[Z(H)], C(H) is the
capacitance derived as indicate in [Gupta et al.,1979].
The computation is iteratively repeated, following an ap-
proach similar to the so-called distorted-wave Born ap-
proximation, which has been applied in [Caorsi et al.,
1993] to nonlinear dielectrics and detailed in [Caorsi et
al., 2001] for the computation of the interactions between
an incident wave and a superconducting object. In partic-
ular at each iteration, the magnetic field is obtained on the
basis of the current density of the previous step, starting
by the linear case.

2.2. Choice of the nonlinear operator L(H)

In order to apply the previously described method, a
model for theL operator must be employed. This model
should result from experimental characterization of su-
perconducting materials. According to the literature on
the subject, two models are considered here.

2.2.1. Third-order nonlinearity Following the ex-
perimental data provided in [Oates et al.,1991], a de-
pendence of the surface resistance with respect to the mi-
crowave power is assumed. In particular, the following
quadratic relation has been found to be a good approxi-
mation of this behavior:

Rs = Rs0 + αH2 (10)

whereRs0 is the surface resistance for a very lowHand
α is a constant. From this relationship, one can deduce a
quadratic nonlinearity forσ1 and, consequently:

L(H) = βH2 (11)

where

β =
2α

ω2µ2
0λ3

(12)

The measurement was made in [Oates et al.,1991] by
considering a superconducting films made ofYBa2Cu3

O7−x at temperatures of 77K and 4K and for a frequency
of 1.5 GHz. The value ofα was found by using a numer-
ical fitting based on a least-square approximation.

2.2.2. Second-order nonlinearity As mentioned in
the previous section, in high-field regime, the quadratic
relation used for approximating the surface resistance do
not agree adequately with experimental results. In par-
ticular, it has been pointed out in [Ma and Wolff,1996
(a); Ma and Wollf,1996 (b)] that, whenH is large,Rs
increases faster thanH2. In order to fit the experimental
data provided in [Nguyen et al,1993] with a second-order
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nonlinearity, a least-square fitting has been used. In par-
ticular,Rshas been modeled as follows:

Rs = Rs0 + α
′
H3 + β

′
H2 + γH (13)

The results are given in Figure 2 and described in SectionFigure 2.
3. In the present case, we obtained:

L(H) = ηH3 + θH2 + τH (14)

where

η =
2α′

ω2µ2
0λ3

(15)

θ =
2β′

ω2µ2
0λ3

(16)

τ =
2γ

ω2µ2
0λ3

(17)

In the following, for comparison purposes, we will use
the experimental data in [Nguyen et al,1993] for a tem-
perature of 4.3K and a frequency of 1.5 GHz. The su-
perconducting material is aYBa2Cu3O7−x, which has a
critical temperatureTc = 77K.

2.2.3. Effects of the nonlinearity of λ on L(H) A
more accurate model can be derived by taking into ac-
count the nonlinear effect of the magnetic field on the
penetration depthλ, although this effect is usually neg-
ligible. Following the approach in [Oates et al.,1991],
the fractional change in penetration depth∆λ/λ, can been
calculated as a function of the magnetic fieldH as:

∆λ
λ

= ξH2 (18)

Since ∆λ
λ has been found to be small, from the binomial

approximation one can deduce the expression for the non-
linear operatorL(H)

L(H) = ζH2 + χH4 (19)

where

ζ =
2α

ω2µ2
0λ3

0

(20)

χ = −
6αξ

ω2µ2
0λ3

0

(21)

3. Numerical examples

In this section, some guiding structures, commonly
used in microwave applications, are considered and their
attenuation constants are calculated by using the models



7

developed in the previous sections. The assumed struc-
tures (shown in Figure 3) are the following: (a) a striplineFigure 3.
embedded in vacuum; (b) a microstrip; (c) a parallel-
plane transmission line. The parameters adopted to char-
acterize the third-order nonlinearity are those experimen-
tally deduced in [Oates et al.,1991]. Analogously, the
parameters for the second-order nonlinearity are derived
from [Nguyen et al,1993]. Figure 2 shows the com-
parison between these experimental data and the cubic
function obtained by a least-square technique. In order
to apply the numerical approach previously described, a
nonuniform grid was superimposed to the cross section
of each transmission line under examination. The grid
cells are more concentrated in the central region of the
return lines and near the edges of the signal line, where
the current density is much greater. The smallest element
of the grid has linear dimensions which are fractions of
the penetration depth. In particular, this value was chosen
equal toλ

4 . In the first example, numerical results for the
stripline configuration are reported. The width of the sig-
nal line of the stripline wasWs = 150µmand the widths of
the ground planes wereWgd = 8000µm, the distance be-
tween the two return lines wasd = 864µmand the thick-
ness of the superconductors was varied from 0.1µm to
0.8µm. The structure is embedded in vacuum and is the
same considered in [Sheen et al.,1991], where a method
to calculate the resistance, the inductance and the current
distribution for a multisuperconductors transmission line
was proposed. Figure 4, shows the values of the attenu-Figure 4.
ation constant for the linear case, and for different values
of the thickness of the superconductor. Figure 5 gives theFigure 5.
same parameter versus the penetration depth, using the
nonlinearity model proposed in Section 2.2.1. In particu-
lar, the following cases are considered: (a)t = 0.1µm; (b)
t = 0.2µm; (c) t = 0.3µm; (d) t = 0.4µm; (e) t = 0.8µm.
The peak value ofH is assumed in the range 25-500 Oe.
It is worth notice that, for low values of the penetration
depth, the attenuation constant is similar to that of the
linear case and exhibits limited changes in the considered
range ofH values, for all thet considered. On the con-
trary, when the penetration depth increases, the effect of
the nonlinearity is rather significant for allt. As expected,
the attenuation constant decreases when the thickness of
the superconductors increases. Figure 6.

Figure 6 shows the plot of the attenuation constant ver-
sus the penetration depth, which has been obtained by
using the model described in Section 2.2.3. In particu-
lar, two values oft were assumed: (a)t = 0.1µmand (b)
t = 0.8µm. The differences between the results of Figure
5 and Figure 6 are very small (less than 0.1% for anyλ
andH). The nonlinearity ofλ with respect toH is not very
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significant on the attenuation constant. This confirms the
considerations pointed out in [Oates et al.,1991]. The
nonlinearity effects onσ1 are much more evident. Fig- Figure 7.
ure 7 shows the results for the second-order model (Sec-
tion 2.2.2). In this case, too, we considered (a)t = 0.1µm
and (b)t = 0.8µm. As expected, the two models predict
analogous results for low values ofH, whereas for high
H levels, notable changes can be noticed and the second-
order nonlinearity predicts higher attenuation.
In the second example, a microstrip line made ofYBCO
was considered (Figure 2 (b)). The dielectric substrate
was made ofLaAlO3 (εr = 25) with a thicknessd =
500µm; the width of the signal line wasWs = 150µm
and the width of the return line wasWgd = 5000µm. The
above structure is the same as considered in [Liu and Itoh,
1993]. The analysis is performed for different values of
the thickness of the superconducting films in the range
between 0.002µmand 0.02µm. The results are provided
in Figure 8 and correspond to those provided in [Liu and Figure 8.
Itoh, 1993] (Figure 6). Figure 8 shows the values of the
attenuation constant for different values of the films thick-
ness, and the nonlinearity is modeled as described in Sec-
tions (a) 2.2.1 (quadratic nonlinearity), (b) 2.2.2 (cubic
nonlinearity), and (c) 2.2.3 (nonlinearity of the penetra-
tion depth ), for temperature values of 4K and 77K and
assumingλ(0) (linear) = 0.22µm. As can be seen, for
low H, the obtained values are in good agreement with
those in [Liu and Itoh, 1993], which have been calcu-
lated in the linear case. In the third example, a parallel-
plane transmission line (Figure 2 (c)) was considered. As
in the previous examples, the superconductor used was
YBCOand the dielectric substrate was made ofLaAlO3

(εr = 25). The thickness of the signal and return lines was
t = 0.1µm; the distance wasd = 0.1µmand the widths of
the superconductors wereWgd = 150µm. Figure 9.

Figure 9 shows the plots of the attenuation constant
versus the penetration depthλ, using the models devel-
oped in Sections (a) 2.2.1, (b) 2.2.2. In order to have an
idea of the differences in the behaviors predicted by the
two models, Figure 10 shows the attenuation constantFigure 10.
for different values of the penetration depth (in the range
0.1-1µm) and for two values of the peakH: (a) 25Oe
and (b) 500Oe. When computed by using the nonlinear
model in Section 2.2.3, very small differences (less than
0.05%), have been obtained with respect to the results re-
ported in Figure 10 (a). Finally, the same configuration
was analyzed, but assumingt = 1µmandd = 1µm. The
results are provided in Figure 11, where, for a consis-Figure 11.
tency check, the values obtained by applying the analyt-
ical formulation in [Van Duzer and Turner, 1981] (linear
case) are also reported.
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4. Conclusion

The attenuation constant of several superconducting
transmission lines widely used in microwave applications
has been calculated.
In particular, the experimentally-verified nonlinear be-
haviors of superconducting materials at microwave fre-
quency has been taken into account. Quadratic and cubic
expressions have been used to model the behavior of the
superconducting material versus the magnetic field. The
significant effect of the nonlinearity on the attenuation
constant has been evaluated with reference to a number
of configurations and propagation conditions. The im-
portance of the modeling of the nonlinear effect clearly
resulted from the reported computer simulations.
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Figure Captions

Figure 1. Problem geometry. Cross section of the multi-
conducting transmission line.

Figure 1. Problem geometry. Cross section of the multiconducting transmission line.

Figure 2. Nonlinear surface resistance. Experimental
data [Nguyen et al, 1993] and least-square fitting with a
second-order nonlinearity (equation (13)).

Figure 2. Nonlinear surface resistance. Experimental data [Nguyen et al, 1993] and least-square
fitting with a second-order nonlinearity (equation (13)).

Figure 3. Superconducting stripline (a), superconduct-
ing microstripline (b) and superconducting parallel-plate
transmission line (c)

Figure 3. Superconducting stripline (a), superconducting microstripline (b) and superconducting
parallel-plate transmission line (c)

Figure 4. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various film thick-
nesst (linear case).

Figure 4. Superconducting stripline. Attenuation constant versus the penetration depthλ for various
film thicknesst (linear case).

Figure 5. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.2µm; (c) t = 0.3µm; (d) t = 0.4µm; (e) t = 0.8µm
(Quadratic nonlinearity (Section 2.2.1)).

Figure 5. Superconducting stripline. Attenuation constant versus the penetration depthλ for various
peak values ofH and various films thicknesst: (a) t = 0.1µm; (b) t = 0.2µm; (c) t = 0.3µm; (d)
t = 0.4µm; (e) t = 0.8µm(Quadratic nonlinearity (Section 2.2.1)).
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Figure 6. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.8µm(Quadratic nonlinearity and nonlinearity in the
penetration depth (Section 2.2.3)).

Figure 6. Superconducting stripline. Attenuation constant versus the penetration depthλ for various
peak values ofH and various films thicknesst: (a)t = 0.1µm; (b) t = 0.8µm(Quadratic nonlinearity
and nonlinearity in the penetration depth (Section 2.2.3)).

Figure 7. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.8µm(Cubic nonlinearity (Section 2.2.2)).

Figure 7. Superconducting stripline. Attenuation constant versus the penetration depthλ for various
peak values ofH and various films thicknesst: (a) t = 0.1µm; (b) t = 0.8µm(Cubic nonlinearity
(Section 2.2.2)).

Figure 8. Microstrip line. Normalized attenuation con-
stant α

ω√µ0ε0
versus the films thicknesst for various peak

values ofH and for temperature values of 4K and 77K.
Nonlinear cases, modeled as in Sections (a) 2.2.1, (b)
2.2.2, (c) 2.2.3.

Figure 8. Microstrip line. Normalized attenuation constantαω√µ0ε0
versus the films thicknesst for

various peak values ofH and for temperature values of 4K and 77K. Nonlinear cases, modeled as
in Sections (a) 2.2.1, (b) 2.2.2, (c) 2.2.3.

Figure 9. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for various peak values ofH. Films thicknesst = 0.1µm.
(a) Quadratic and (b) cubic nonlinearities.

Figure 9. Parallel-plane superconducting transmission line. Attenuation constant versus the pene-
tration depthλ for various peak values ofH. Films thicknesst = 0.1µm. (a) Quadratic and (b) cubic
nonlinearities.

Figure 10. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for the two nonlinear models considered (quadratic and
cubic nonlinearities). Film thicknesst = 0.1 mum. Peak
values ofH: (a) 25 Oe and (b) 500 Oe.

Figure 10. Parallel-plane superconducting transmission line. Attenuation constant versus the pene-
tration depthλ for the two nonlinear models considered (quadratic and cubic nonlinearities). Film
thicknesst = 0.1 mum. Peak values ofH: (a) 25 Oe and (b) 500 Oe.



15

Figure 11. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for various peak values ofH. Films thicknesst = 1µm.
(a) Quadratic and (b) cubic nonlinearities.

Figure 11. Parallel-plane superconducting transmission line. Attenuation constant versus the pene-
tration depthλ for various peak values ofH. Films thicknesst = 1µm. (a) Quadratic and (b) cubic
nonlinearities.
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Figure 1. Problem geometry. Cross section of the multi-
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Figure 2. Nonlinear surface resistance. Experimental
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second-order nonlinearity (equation (13)).
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Figure 3. Superconducting stripline (a), superconduct-
ing microstripline (b) and superconducting parallel-plate
transmission line (c)
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Figure 5. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.2µm; (c) t = 0.3µm; (d) t = 0.4µm; (e) t = 0.8µm
(Quadratic nonlinearity (Section 2.2.1)).
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Figure 6. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.8µm(Quadratic nonlinearity and nonlinearity in the
penetration depth (Section 2.2.3)).
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Figure 7. Superconducting stripline. Attenuation con-
stant versus the penetration depthλ for various peak val-
ues ofH and various films thicknesst: (a) t = 0.1µm; (b)
t = 0.8µm(Cubic nonlinearity (Section 2.2.2)).
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Figure 8. Microstrip line. Normalized attenuation con-
stant α

ω
√

µ0ε0
versus the films thicknesst for various peak

values ofH and for temperature values of 4K and 77K.
Nonlinear cases, modeled as in Sections (a) 2.2.1, (b)
2.2.2, (c) 2.2.3.
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Figure 9. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for various peak values ofH. Films thicknesst = 0.1µm.
(a) Quadratic and (b) cubic nonlinearities.
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Figure 10. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for the two nonlinear models considered (quadratic and
cubic nonlinearities). Film thicknesst = 0.1 mum. Peak
values ofH: (a) 25 Oe and (b) 500 Oe.



24

 

 

1

 

2

 

3

 

4

 

5

0.1    0.5     1

A
tte

nu
at

io
n 

co
ns

ta
nt

 α
 (

dB
/m

)

λ (µm)

Thickness t=1 µm

Analitycal
Linear

Nonlinear 25 Oe
Nonlinear 100 Oe
Nonlinear 200 Oe
Nonlinear 300 Oe
Nonlinear 400 Oe
Nonlinear 500 Oe

(a)

 

 

1

 

2

 

3

 

4

 

5

0.1    0.5     1

A
tte

nu
at

io
n 

co
ns

ta
nt

 α
 (

dB
/m

)

λ (µm)

Thickness t=1 µm

Analitycal
Linear

Nonlinear 25 Oe
Nonlinear 100 Oe
Nonlinear 200 Oe
Nonlinear 300 Oe
Nonlinear 400 Oe
Nonlinear 500 Oe

(b)

Figure 11. Parallel-plane superconducting transmission
line. Attenuation constant versus the penetration depthλ
for various peak values ofH. Films thicknesst = 1µm.
(a) Quadratic and (b) cubic nonlinearities.




