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Abstract – This work is aimed at presenting a methodology that exploits the scattered electromagnetic radiation collected on a 
measurement region outside the area under investigation to locate and characterize multiple unknown profiles. In many practical cases, 
an accurate quantitative imaging of the scenario under test is required and it can be reached by using a high resolution representation of 
the dielectric profile of the scatterers. Towards this aim, an enhanced iterative multi-resolution procedure that exploits a morphological 
processing for detecting and focusing on different non-connected regions-of-interest is developed. 
A suitable set of representative numerical results is presented for demonstrating that the proposed approach is able to efficiently detect the 
objects located in the test domain and to enhance the accuracy in reconstructing multiple scatterers 
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I. INTRODUCTION 

Microwave imaging techniques are based on the numerical processing of the scattered electromagnetic radiation collected 
on a measurement domain lying outside the region under test. Such methodologies find a variety of applications in biomedical 
sciences (e.g., breast cancer imaging [1]), in the context of the subsurface inspection [2] and of the non-destructive industrial 
testing [3]. 

However, whatever the application, the information content of the problem data turns out to be intrinsically bounded [4] and 
thus an high-resolution and uniform quantitative imaging of the scenario under test cannot be realized by simply processing the 
scattered data and without proper countermeasures. On the other hand, every practical application requires the representation of 
the dielectric or conductivity profiles (i.e., discontinuities with respect to the background medium) with a detailed level of 
spatial resolution. 

In order to address such issues, different kinds of multiresolution approaches have been proposed [5]-[9] in order to meet 
the accuracy requirements although in the presence of a limited amount of informative data. These techniques avoid a fine and 
homogeneous discretization in the whole investigation domain by properly employing a high resolution level only in some 
regions-of-interest (RoIs) belonging to the area under test. 

Pursuing this idea, Miller et al. [5][6] proposed statistically-based approaches, while other works introduced a wavelet 
expansion [7][8] of the unknowns in the test domain. Successively, the Iterative Multi-Scaling Algorithm (IMSA) has been 
presented in [9]. Such a methodology iteratively reconstructs an unknown scenario exploiting an adaptive allocation of the 
resolution levels according to the information gained during a multi-step retrieval process. Therefore, an enhanced resolution in 
the regions-of-interest is guaranteed, since the data collected through the field measurement are efficiently exploited and new 
information on the scenario is acquired during the multi-step procedure. Notwithstanding the effectiveness of the IMSA in 
many situations and conditions [9], it presented some limitations in dealing with multiple-scatterers configurations. Thus, the 
integration of a suitable procedure able to localize multiple objects in a search domain was mandatory. Certainly, many 
different approaches could be, in principle, integrated in the IMSA, as for example the method of decomposition of the time 
reversal operator (DORT) [10] or the level set method (LSM) [11]. The former allows to locate a set of unknown scatterers 
with a reduced sensitivity to the noise, but the sizes of the scatterers have to be smaller than half a wavelength and the objects 
should be separated by more than a third of a wavelength. The LSM is also very effective in determining the location and the 



shape of unknown obstacles but it requires the knowledge of the dielectric parameters of the scatterers under test. Moreover, a 
technique for finding the minimum circular envelope enclosing a set of scatterers and successively localize them has been 
proposed in [12]. Even though it avoids the solution of the full inverse problem, such an approach cannot provide any 
estimation of the extension of the RoIs. 

However, in several applications a quantitative characterization of the dielectric properties of multiple RoIs is required and 
the localization or the shaping of the scatterers is not enough. For such a reason an improved version of the IMSA has been 
proposed in [13] by integrating a clustering procedure [13] between successive steps of the multi-scaling algorithm. The 
numerical and the experimental assessment have demonstrated the accuracy of the approach in resolving different non-
connected regions-of-interest exploiting a suitable processing of intermediate reconstructions. The pixel representation of the 
retrieved profile is firstly binarized by thresholding the arising image according to the histogram analysis. Successively, a 
scanning of the image allows the detection and the definition of the RoIs where the scatterers are supposed to be located and 
where the resolution level will be increased. Unfortunately, such a procedure presents some deficiencies since the arising 
reconstruction accuracy turns out to be dependent in a significant fashion on the thresholding process in the histogram analysis. 
Therefore, a new set of morphological transformations [14][15] has been developed and integrated in the multi-scaling 
algorithm in order to substitute the clustering procedure [13] and allow a more detailed detection of the RoIs without a large 
increase in the overall computational burden. 

This paper will be structured as follows. In Sect. II, the mathematical formulation of the morphological processing for the 
RoIs definition and its integration in the IMSA will be presented. In Sect. III, a comparative analysis will be carried out in 
order to assess the advantages and the robustness of the proposed approach [called morphological IMSA, (M-IMSA)] in 
dealing with a selected set of representative scattering configurations. Eventually, some conclusions are drawn (Sect. IV). 

II. PROBLEM FORMULATION 

The two-dimensional geometry of Fig. 1 showing a cross sectional view of an inhomogeneous investigation domain  
will be considered in the following. Such a scenario is sensed through a set of monochromatic incident electric fields TM 
polarized impinging from V different directions [
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where rε  and σ  denote the relative permittivity and the conductivity, respectively. 
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measurement domain  located outside . These data are related to the contrast function OD ID ),( yxτ  by means of the well-
known integral equations [16] 
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where the external and internal scattering operators [16] are denoted by [ ]⋅ext

vS  and , respectively; [ ]⋅int
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, , are the unknowns whose N-dimensional finite representation has to be reconstructed by solving a 
non-linear and ill-posed problem. 
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Moreover, an efficient allocation of the unknowns and thus a suitable discretization of the Regions-of-Interests (RoIs) of 
 are necessary for a reliable processing of the limited amount of information collectable from the field measures. ID

Towards this purpose, the M-IMSA aims at defining, through a multi-step ( optSs ,...,1= ) procedure, a multiresolution 
reconstruction of the unknown domain under test according to the flow-chart in Fig. 2, where the sequence of the main M-
IMSA operations and the integrated morphological processing are sketched. In more detail, the structure of the algorithm can 
be described by considering four macro-blocks: the Profile Retrieval stage, the Profile Processing stage, the Convergence 
Check, and the block responsible for the definition of the resolution level in the RoIs. 



A. Profile Retrieval 

After the initialization of the unknowns to the free-space configuration, the number of RoIs is set to 1)0( =I  and 
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and minimized for determining the optimal unknowns configuration that can be related to the problem data through the 
scattering model defined through (2) and (3). The functional (4) can be minimized by using any available optimization tool 
(e.g., [17] - [19]) and the reconstructed image of the object function distribution can be processed to acquire information about 
the number of RoIs ( )(sI ) in  and their extension ID ( ))(

)(
i

sRoID . 

B. Profile Processing 

After the “Profile Retrieval”, the retrieved image of the unknown scenario is processed with a set of morphological 
operations described in the following. Firstly, a noise clipping stage reduces the presence of the image noise thus avoiding an 
overestimate of the number of RoIs. Thanks to such an operation a new distribution  )(s

ncτ
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smother distribution and to reduce the intensity of the image artifacts, the distribution  is low-pass filtered by applying a 
weighted average over a neighborhood ( , L being the dimension of the neighborhood) centered around  
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The filtering strength is determined by the value of the parameter χ  heuristically selected during the calibration of the 



thresholding stage. Successively, the RoIs are identified by firstly applying a binary transformation to  )(s
fτ
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and in order to isolate at least one pixel (seed) per object in . Finally, the RoI to which a seed belongs to is determined by 
finding the minimum square area including the subset of non-zero pixels around the considered seed. 

ID

C. Convergence Check 

The block concerned with the Profile Processing allows the estimate of the number of RoIs, their position and their 
extension. By means of these informations, the convergence of the M-IMSA algorithm to a stationary reconstruction is 
estimated according to the stability criterion described in [13]. 

D. Definition of the Level of Resolution in the RoIs 

If the convergence check does not hold true, the basis functions are allocated in the )(sI  estimated RoIs according to the 
following rule 
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where  and  are the number and the area of the i-th region at the s-th step of the M-IMSA, respectively. Moreover, 
the function  provides the greater integer of its argument. 
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In such a way, the spatial resolution in the RoIs of  is increased and the accuracy of the reconstruction turns out to be 
further improved through the optimization of the multi-resolution version [20] of the cost function in Eq. (4). 
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III. NUMERICAL ANALYSIS 

The aim of this Section is twofold. Firstly, some results of the analysis of the impact of the thresholding parameters on the 
approach performance are reported to give some indications on their optimal setting. By considering the so-defined parameter 
configuration, the effectiveness and robustness of the M-IMSA approach are then assessed when dealing with different 
scattering scenarios and conditions. 

A. Calibration 

As far as the morphological processing is concerned, µ  and χ   have to be heuristically calibrated. The first parameter  is 
related to the noise clipping stage and it should be properly set in order to remove the image noise without compromising the 
reconstruction of the profile under test since an incorrect large value might significantly alter the reconstructed distribution of 



the object function compared to the actual one. Moreover, the binarization stage requires the tuning of χ   in order to accurately 
identify the RoIs. As a matter of fact, a suitable setting guarantees the detection of the number of scatterers belonging to the 
investigation domain without compromising the effectiveness of the proposed approach in terms of both convergence rate and 
computational costs. 

According to these considerations a set of numerical simulations has been performed in order to define the optimal 
compromise between clipping effectiveness and inversion accuracy versus the values of the morphological parameters. A 
representative result of such a calibration is reported in Fig. 3. It concerns with the test case shown in Fig. 3(a) characterized by 
two 06.0 λ -sided square homogeneous dielectric ( 0.21 =τ , 5.02 =τ ) scatterers located in a square investigation area 

00.3 λ=
IDL -sided. The two objects are located at ( ) and ( ). The investigation domain 

has been initially partitioned in  square subdomains. As far as the imaging set up is concerned, an incident plane 
wave impinging from  different equally-spaced directions has been assumed and the field measures have been collected 
at , , positions on a circular observation domain of radius 

0
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15)( =vM Vv ,...,1= 04λ . In order to blur the scattering data, a 
Gaussian noise characterized by a signal-to-noise ratio (SNR) of  has been added to the simulated field values. dB20

For an exhaustive analysis, several simulations have been carried out varying the parameters values in the range 305 ≤≤ µ  
and 3510 ≤≤ χ . The results of these experiments are resumed in Fig. 3(b) where a color map of the total reconstruction error 

(as defined in [9]) as a function of 
µ

 and χ  is reported. As it can be observed,  is lower and more stable in the 
regions defined by 

IMSAM
tot

−ξ
2010 ≤≤ µ  and 3010 ≤≤ χ . Moreover, it reaches its minimum value in correspondence with 20=µ  and 

15=χ  that have been assumed as optimal setting and used in the following. 

B. Assessment 

In this Sub-Section, a multiple object configuration will be considered in order to point out the effectiveness and the 
improvements allowed by the M-IMSA when compared to the standard multiple region IMSA (indicated in the following as 
IMSA). The imaging setup is similar to that previously described, but some geometrical parameters have been changed in order 
to test the effectiveness of the morphological processing in a different scenario with respect to that used in the calibration. In 
particular, the incident field is still a plane wave impinging from 8=V  different equally-spaced directions, but the field 
measures have been collected at  locations on a circular observation domain 15)( =vM 02λ  in radius. Likewise the test case in 
Sub-Section A, the scenario was characterized by dBSNR 20= . 

As a first test case, let us consider the configuration shown in Fig. 4 where three 015.0 λ -sided square homogeneous 
dielectric ( 0.221 ==ττ , 5.03 =τ ) scatterers are located in a square investigation area 05.1 λ=

IDL -sided at the following 

positions: , , and , . 0
)2()1( 3.0 λ−=−= oo xx 0
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As far as the inversion results are concerned, the object function reconstructed at the first step ( ) of the M-IMSA is 

shown in Fig. 5(a). The set of morphological operations, described in Sect. II, have then applied to such a profile for obtaining 
the binary image in Fig. 5(b) where the detected RoIs are indicated.  

1=s

Successively, the spatial resolution has been increased in the RoIs taking into account the discretization rule defined through 
Eq. (13) and the arising multi-resolution cost function has been still minimized. The result of the second step ( 2=s ) of 
minimization is shown in Fig. 6(a). The accuracy of the estimated contrast is improved as well as the effectiveness of the 
morphological operations in refining the extensions and the positions of the RoIs. Eventually, the last step of minimization 
provided the convergence profile ( ) displayed in Fig. 6(b) where the stronger scatterers are faithfully retrieved 
although the estimated profile of the weak-contrast object turns out to be slightly deteriorated. 

3== optSs

For comparison purposes, the reconstructed distribution obtained by means of the IMSA (according to the implementation 
proposed in [13]) is shown in Fig. 7. As it can be noticed, the M-IMSA significantly overcomes the standard IMSA since this 
latter is not able to detect the RoI of the weak scatterer, which is neglected from the second step onward. Quantitatively, 

 while  for the standard implementation of the IMSA. Such an event is mainly due to the high 
sensitivity to the noisy conditions of the clustering procedure detailed in [13]. As a matter of fact, the image histogram 
corresponding to the profile reconstructed at  is thresholded with 

%53.1=−IMSAM
totξ %41.2=IMSA

totξ

1=s 7.0=τT  [13] and the RoIs detected are shown in Fig. 
8. This plot points out that the support of the third object is not revealed. On the contrary, the morphological processing 
integrated in the iterative multi-scaling approach allows the correct detection of the actual RoIs and the retrieval of the support 
of the weak scatterer (Fig. 6) although it is located far from the stronger ones. 

On the other hand, the behavior of the  (Fig. 9) highlights the importance from a computational point of view of an 
accurate estimation of the areas where the scatterers are located. As a matter of fact, the cost function of the IMSA suddenly 

)(sΦ



increases at the second step when the support of the third object is not detected and the minimization algorithm cannot retrieve 
a configuration of the unknowns providing a good fitting with inversion data. 

Successively, a second numerical experiment has been carried out in order to assess the dependence of the M-IMSA 
accuracy on the distance among the objects under test. Moreover, since the morphological processing is expected to fail in 
distinguishing different RoIs when they are too close, the other aim of such an analysis is that of evaluating the spatial 
resolution capability of the M-IMSA and its reliability in comparison with that of the single-region IMSA (S-IMSA) in [9]. 

By referring to the scattering configuration shown in Fig. 4, the distance δ  between the centers of the strong scatterers and 
that of the weak one has been varied in the range  and the reconstructions have been carried out by means 
of both the M-IMSA and the S-IMSA. From the set of representative reconstructions shown in Fig. 10, one can observe that in 
the case of , the S-IMSA [Fig. 10(a)] performs better than the M-IMSA [Fig. 10(b)], since the latter is not able to 
detect accurately the RoI related to the weak contrast, being it in close proximity to the other scatterers. Such an inaccuracy 
worsens the reconstructed distribution [see Fig. 10(b) versus Fig. 10(a)] as confirmed by the estimated values of the total 
reconstruction error reported in Tab. I ( ) and more significantly of the internal reconstruction error (i.e., 
computed only on the support of the scatterers) being  versus . However, it should be pointed out 
that such a drawback of the M-IMSA can be straightforwardly overcome by merging in an unsupervised way the RoIs when 
their distance is lower than . 
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When the distance δ  is increased to , the effectiveness of the two strategy is quite similar even though the M-IMSA 

turns out to be slightly better as pictorially shown comparing Fig. 10(c) and Fig. 10(d) and quantitatively confirmed by the 
values of the error figures in Tab. I. Further increasing the distance between the scatterers to 

0541.0 λ

0808.0 λδ =  the advantages of 
splitting the RoIs and increasing the resolution where needed are clearly pointed out in Fig. 10(e) (S-IMSA) and Fig. 10(f) (M-
IMSA). While the S-IMSA strategy fails in reconstructing the weak scatterer, the morphological transformations exploited by 
the M-IMSA allow to correctly identify three non-connected RoIs inside the domain under test. In such a configuration, the 
reconstruction errors clearly highlight the efficacy of the M-IMSA in providing a reliable retrieval of the actual profiles 
( ). IMSAS

tot
IMSAS

tot
−− ≈ ξξ 35.2

The last set of experiments is aimed at evaluating the dependence of the M-IMSA performance on the dielectric 
characteristics of the objects under test. Referring to the original distribution of the contrast function shown in Fig. 3(a), the 
numerical analysis has been carried out by varying the value of the contrast of the second scatterer in the range 2.16.0 2 ≤≤ τ , 
setting 2.11 =τ . Fig. 11 shows the behavior of the total reconstruction error versus 21 τττ −=∆ . As expected, the M-IMSA is 
more accurate than the S-IMSA and the gap is more and more evident as log as τ∆  increases. Such results are due to the 
intrinsic limitation of the S-IMSA that unavoidably focuses mainly on the stronger scatterer. For completeness, some 
representative reconstructions concerned with such a study are then shown in Fig. 12. When 0.0=∆τ , the reconstruction 
yielded with the S-IMSA [Fig. 12(a)] and that by means of the M-IMSA [Fig. 12(b)] are comparable even though the latter is 
slightly more accurate (see also Fig. 10). On the contrary, when 4.0=∆τ , the dielectric distributions of the contrasts are more 
faithfully retrieved by the M-IMSA [Fig. 12(d)] than that through the S-IMSA [Fig. 12(c)]. 

IV. CONCLUSIONS 

In this paper, a numerical assessment of the multiscale iterative inversion procedure that exploits a set of morphological 
transformations has been presented. Such an analysis has pointed out that the M-IMSA is a more robust and accurate technique 
for the identification of the RoIs than the standard IMSA implementation. Moreover, some indications on the robustness and 
current limitations of the M-IMSA versus the scatterers distances and the dielectric values of the scatterers have been drawn.  

Further studies will be dedicated to analyze the class of Coordinate Logic filters [21] since they could provide a non-
negligible improvement of the morphological operators. Finally, the proposed approach is expected to be less efficient when 
there are variations in the background as in the case of subsurface imaging problems and a suitable customization will be 
necessary. Such a scenario of application is currently under study. 
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FIGURE CAPTIONS 
 

Figure 1. Problem Geometry. 

Figure 2. The flow-chart of the M-IMSA strategy. 

Figure 3. Calibration procedure. (a) Reference distribution of the representative test case used for calibrating the 

parameters µ  and χ . (b) Results of the calibration experiments reported in terms of the total reconstruction 

error. 

Figure 4. Original distribution of the reference profile. 

Figure 5. Three homogeneous scatterers. (a) Reconstructed profile with SNR=20dB at the first step (s=1) of the M-IMSA 

and (b) result of the RoIs definition process. 

Figure 6. Three homogeneous scatterers. Reconstructed profile by means of the M-IMSA with SNR=20dB when (a) s=2 

and (b) s=3. 

Figure 7. Three homogeneous scatterers. Reconstructed profile by means of the IMSA with SNR=20dB at the convergence 

step (b) s=3. 
Figure 8. Three homogeneous scatterers. Image of the object function obtained by the IMSA at s=1 after thresholding. 

Figure 9. Three homogeneous scatterers. Behavior of the multi-step cost function minimization for the IMSA and the M-

IMSA approaches. 

Figure 10. Three homogeneous scatterers. Reconstructed profile by means of (a) (c) (e) the IMSA and (b) (d) (f) the M-

IMSA when (a) (b) 0335.0 λδ = , (c) (d) 0541.0 λδ =  and (e) (f) 0808.0 λδ = . 

Figure 11. Two homogeneous scatterers. Behavior of the total reconstruction error versus the parameter 21 τττ −=∆  

(SNR=20dB). 

Figure 12. Two homogeneous scatterers. Reconstructed profile (SNR=20dB) by means of (a) (c) the IMSA and (b) (d) the 

M-IMSA when (a) (b) 0.0=∆τ  and (c) (d) 4.0=∆τ . 

 



TABLE CAPTIONS 
 

Table 1. Three homogeneous scatterers. Values of the error figures for different scatters locations. 

 
 



 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 



 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
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Fig. 3 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 



 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
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Fig. 5 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
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Fig. 6 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 



 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 
 



 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 
 



(a) (b) 

(c) (d) 

(e) (f) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
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Fig. 12 – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
 
 



 
 
 
 
 
 
 

 0/λδ  

 

 

335.0
 

 

541.0
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IMSAS
tot
−ξ  1.79 1.82 2.86 

IMSAM
tot

−ξ 2.66 1.07 1.61 
IMSAS −

intξ  19.30 29.12 28.50 
IMSAM −

intξ 27.46 25.10 12.14 
IMSAS

ext
−ξ  1.25 0.90 2.19 

IMSAM
ext

−ξ 1.90 0.30 1.30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab. I – D. Franceschini et al., “Morphological Processing of Electromagnetic Scattering Data…” 
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